Important Note (ASPIC)

It is strongly recommended to use JABBA, as it is theoretically much better than ASPIC, and much easier to use with the recently released JABBA_Manager menu-driven software (for details, see comparisons below & JABBA Manual).

Thus, we don't maintain ASPIC_Manger anymore.

	JABBA	ASPIC (versions 2~5)		
(1)	Estimation method (Bayesian approach based	on likelihood) used by JABBA is theoretically much better, more		
Estimation	flexible & superior than the least squares (tract	tional) method used by ASPIC.		
methods				
(2)	JABBA can estimate parameters much easily &	ASPIC needs a tedious grid (pin point) search (Batch job), which		
Parameter	r effectively in a short time by the Bayesian sometimes produces incorrect parameters due to loca			
estimation	n approach with MCMC. minima.			
(3)	JABBA can accept any CPUE series. After the	ASPIC needs to check CPUE series if it is plausible in advance by		
CPUE	run, implausible CPUE will be detected.	the data QC. Otherwise, it is difficult to get convergence.		
(4)	Outliers can be found readily after runs by	Need to check outliers before runs. It may be difficult to detect		
Outliers	inspecting residual plots. outliers after run as no effective graphs as in JABBA.			
(5)	JABBA theory is difficult & complicated. But it is Theory is not difficult as for JABBA. But implementation			
Theory	easy to implement if the menu-driven software	menu-driven software is not as easy nor effective as for JABBA.		
	is used.			

Menu-driven software series (No. 2)

ASPIC_MANAGER (VER1.1.0) Manual

(March 2025)

Tom NISHIDA (PhD) (Representative)

aco20320@par.odn.ne.jp

Kazuharu Iwasaki (Software Engineer)

[MENU] Menu-driven stock assessment software developing team(Japan)

https://www.esl.co.jp/products/menu

[MENU] is supported by Environmental Simulation Laboratory (Japan)

© All copyrights and patents are reserved by [MENU]

Contents

lm	nportant note (ASPIC)	01
W	arnings (copyright)	04
Ac	cronyms	05
1.	Introduction	06-07
2.	Requirements for PC and Remarks	08-11
3.	Installation	12-18
4.	Running software (6 menus) (ASPIC_Manager)	20-47 48-51 52-57 58-69 70-73
Αp	pendix A: History of development	82
Αp	pendix B: Output file (for 4.2)	83-87

Warnings

© All copyrights and patents are reserved by [MENU] Menu-driven stock assessment software developing team

- (1) This software can be used only by those who had trainings by [MENU] (personal copy & personal use only).
- (2) Please don't give or sell copies to others.
- (3) Please don't inform the download link of this software to others.
- (4) If uses want to make reports and/or publish papers using this software, please get permission from [MENU] at menu.soft.SEC@gmail.com

ACRONYMS

ASPIC	A Stock-Production Model	
	Incorporating Covariates	
ASPM	Age-Structured Production	
	Model	
В	Total biomass or Spawning	
	Stock Biomass	
BMSY	Total biomass or Spawning	
	Stock Biomass at MSY	
во	Initial Biomass	
вот	Bootstrap	
	(ASPIC Command)	
CI	Confidence Interval	
CPUE	Catch Per Unit Effort	
DOS	Disk Operation System	

EST	Estimated	
F	Fishing mortality	
FIT	To estimate	
	(ASPIC Command)	
F _{MSY}	Fishing mortality at MSY	
GPS	Global Positioning System	
ICCAT	International Commission	
	for the Conservation of	
	Atlantic Tunas	
ЮТС	Indian Ocean Tuna	
	Commission	
IRF	Iteratively Reweighted Fit	
	(ASPIC Command)	
JABBA	Just Another Bayesian	
	Biomass Assessment	

K	Carrying Capacity		
LRP	Limit Reference Point		
MCMC	Markov Chain Monte Carlo		
	methods		
MSY	Maximum Sustainable Yield		
OBS	Observed		
PT	Pella and Tomlinson		
QC	Quality Control		
RFMO	Regional Fisheries		
	Management Organization		
RMS	Root Mean Square (Error)		
SA	Stock assessment		
SAS	Statistical Analysis System		
SB or SSB	Spawning Biomass or		
	Spawning Stock Biomass		

SB _{MSY} or SSB _{MSY}	Spawning Biomass or		
	Spawning Stock Biomass at		
	MSY		
SPSS	Statistical Package for the		
	Social Sciences		
SRA	Stock Reduction Analysis		
SS3	Stock Synthesis 3		
STD	Standardized (CPUE)		
swo	Swordfish		
ТВ	Total Biomass		
TB _{MSY}	Total Biomass at MSY		
TRP	Target Reference Point		
Y/R	Yield per Recruit		

1. Introduction Evolution of PM (Production Model)

				Features	3		
			Equilibrium	Error type			
Evolution	Туре	Primnary author	The state of the s	Observation (data) error	Process (model) error	Bayesian (better) Approach	Comments
old	Original PM	Shaeffer(1954), PT(1969) & Fox (1970)	YES				Classical (Not recommended to use due to EC)
	ASPIC (Ver5.05)	Prager (2004)					Basic, standard & commonly used among RFMOs &
	ASPIC (ver7.5)	Prager (2017)	NO				fishing countries
new	JABBA (Just Another Bayesian Biomass Assessment)	Winker (2018)					Best but high standard (slowly expanding) Recommended

(Note) PT: Pella and Tomlinson

→ This manual is for ASPIC_Manager to implement ASPIC(ver5.05)
JABBA_Manager for JABBA → to be completed in 2024

1. Introduction: ASPIC_Manager

Pervious ASPIC software (2023 or before)

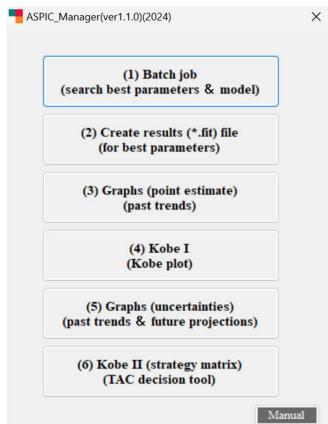
Only one menu (batch job) was available.

→ It is now menu (1)

in the new ASPIC_Manager.

But all other works for menu (2)~(6)

need to be done manually



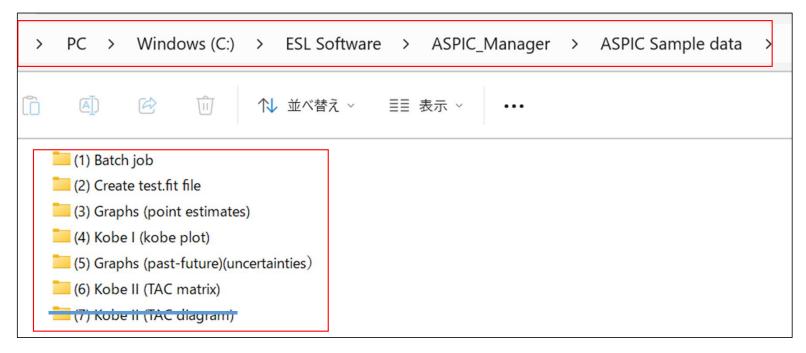
caused many errors in the past

New software: ASPIC_Manager (from 2024) (6 menus) (ALL-in-one & Automated)

Simple & friendly operations → No mistakes/errors

But users must understand meanings of processes (this manual explains)

7


2. REQUIREMENTS FOR PC AND REMARKS (1/4)

(1) Requirements for PC

- Operation System: MS window 10 or 11 and **NOT applicable for MAC (apple) PC.**
- 64bit PC.
- RAM: minimum 2GB.
- Basic software (Word, Excel and Notepad)
- R programming language for window (R-4.3.1-win) needs to be installed in advance. Its size is 80MB (zipped) and 180MB (unzipped).
- To make smooth operations, users need at least 30% of empty space of the hard disk.

2. REQUIREMENTS FOR PC AND REMARKS (2/4)

- (2) Important remarks (sample data) (REVISED)
- This manual uses the sample data for demo.
- Users can use the sample data for practice
 - important: Use the data available folders corresponding to the menu.
- Location of the sample data (7 folders for 7 menus)

2. REQUIREMENTS FOR PC AND REMARKS (3/4)

(2) Important remarks (continued)

Manual

This PowerPoint is the manual (REVISED).

Manul call button is available in menus → do not use (old version)

Keep the original files (important)

Don't use original files. Make copies & use copies as work files like wk1, wk2, etc.

Operation by mouse

This manual explains operations based on "mouse". For "touch panel" or "key board", follow corresponding manipulations.

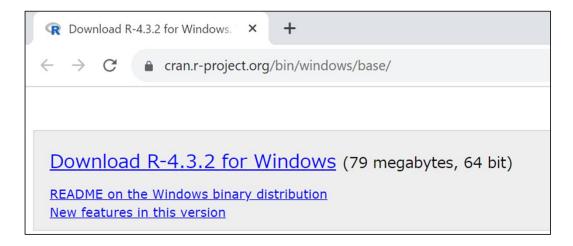
Save

Save files frequently.

2. REQUIREMENTS FOR PC AND REMARKS (4/4)

(2) Important remarks (continued)

- Engines (programs and applications) underpinning this software
- Microsoft Visual Studio (2019)
- Graphics: C# and. NetFrameWork4.7.2
- ASPIC Batch job (Grid search) menu-driven Software (Ver 1.1) (2018)
- Kobe_I_II(ver.6.1.5)(2023)
- R-4.3.1-win(2023)


3. Installation 3 application and Linking R to ASPIC_Manager Before installation, uninstall old versions if uses have precious versions.

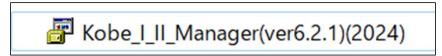
Order of	Name of	Download link	Size of	Size of	How to
the	software		Zipped	unzipped	install?
installation			file	(actual)	See slide #
			(MB)	files (MB)	(This manual)
1	R-4.3.1-win	https://cran.r-project.org/bin/windows/base/	80	180	12
		Download R-4.3.1 for Windows			
2	Kobe_I_II	Get links from Menu-driven stock assessment	7.4	13	13-14
	(ver6.2.0) (2024)	software developing team [MUNE]			
3	ASPIC_Manager	Menu.soft.SEC@gmail.com	26	100	15-16
	(ver1.1.0) (2024)				
4	Linking R to				17
	ASPIC_Manager				

3. Installation: How to install "R-4.3.1-win"?

Go to https://cran.r-project.org/bin/windows/base/

Users will see the window below:

Then download from Download R-4.3.1 for Windows

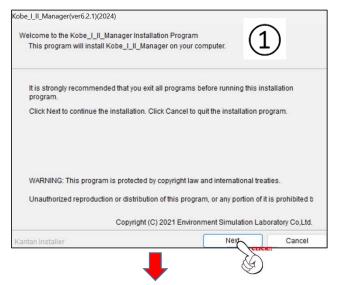

3. Installation: Kobe I (plot) & II (management tool)

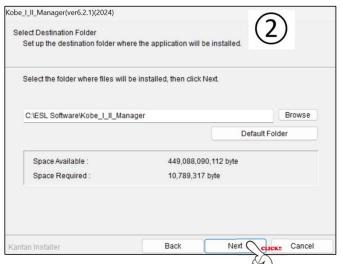
Double click the zipped installer (located folder or desktop)

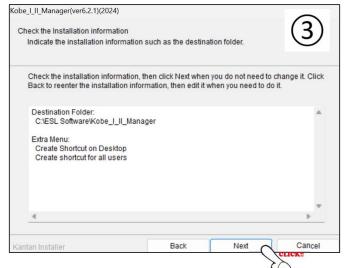
Users can get the download link of the software

from the [MENU] Secretariat at menu.soft.SEC@gmail.com

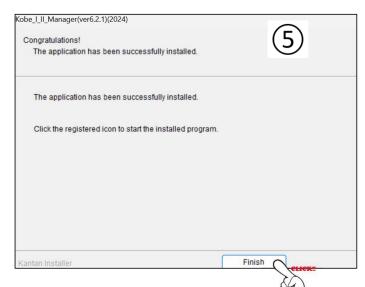
Installer (folder)




Installer (desktop)



3. Installation: Kobe I+II Follow 5 steps



If the destination folder "ESL Software" exits, this window will not appear.


3. Installation: ASPIC_Manager

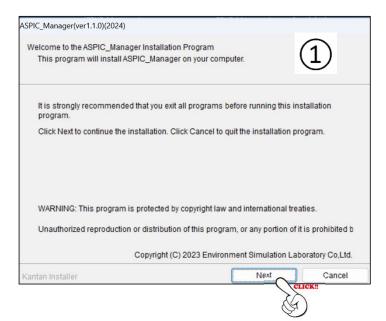
Double click the zipped installer (located folder or desktop)

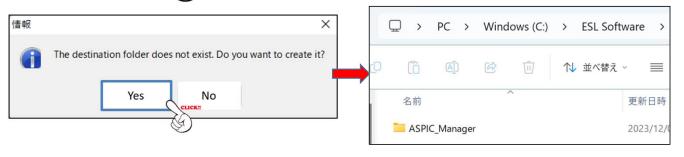
Users can get the download link of the software

from the [MENU] Secretariat at menu.soft.SEC@gmail.com

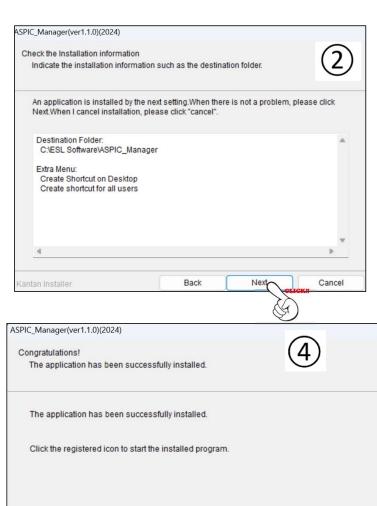
Installer (folder)

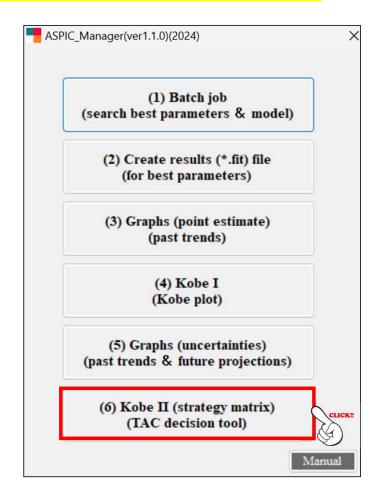
Installer (desktop)

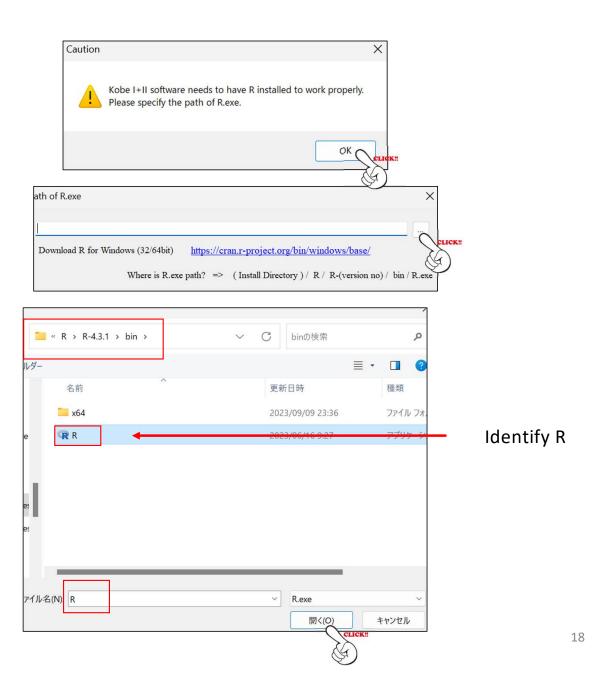



3. Installation

ASPIC_Manager


4 steps


(3)



Users will get the ASPIC Manager folder

3. Installation Linking R to ASPIC_Manager

4. Running software (6 menus)

ASPIC_Manager

4. Running ASPIC_Manager 4.1 Batch job

ASPIC needs one input file (*.inp) (program+ data) to search best parameters & model (batch job).

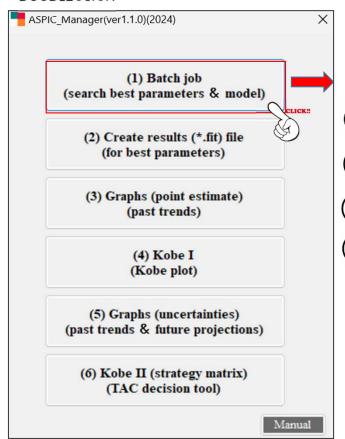
Program

FIT	## Run type (FIT, BOT, or IRF)		
"test"	## title		
LOGISTIC YLD SSE	## Modeltype, conditioning, loss fn		
2	## Verbosity on screen (0-3); add 10 for SUM & PRN file		
1000	## Number of bootstrap trials, <= 1000		
0 20000	## 0=no MC search, 1=search, 2=repeated srch; N trials		
1d-8	## Convergence crit. for simplex		
3d-8 6	## Convergence crit. for restarts, N restarts		
1d-4 24	## Conv. crit. for F; N steps/vr for gen. model		
8d0	## Maximum F when cond. on yield		
1d0	## Stat weight for B1>K as residual (usually 0 or 1)		
1	## Number of fisheries (data series)		
1	## Statistical weight for data series		
1	## B1/K (starting guess, usually 0 to 1)		
7300	## MSY (starting guess)		
70000	## K (carrying capacity) (starting guess)		
0.004	## q (starting guesses 1 per data series)		
0111	## Estimate flags (0 or 1) (B1/K, MSY, K and q)		
3000 15000	## Min and max constraints MSY		
23000 170000	## Min and max constraints K		
39332385	## Random number seed (large integer)		
35	## Number of years of data in each series		
"CPUE Catch"	## Title for 1st series (<=40 chars)		

Data

CC	## Ser	## Series type (CC = CPUE, catch)			
1950	-1	3646			
1951	-1	2581			
1952	-1	2993			
1953	-1	3303			
1954	-1	3034			
(0	omitted)				
1964	380	11258			
1965	240	8652			
1966	229	9349			
1967	278	9107			
	220	9172			
1969	197	9203			
1970	219	9495			
1971	-1	5266			
1972	-1	4766			
1973	-1	6074			
1974	-1	6362			
1975	350	8839			
1976	309	6696			
1977	337	6409			
1978	445	11835			
1979	316	11937			
1980	252	13558			
1981	231	11180			
1982	283	13215			
1983	222	14527			
1984	213	12791			

Entry items


- Red boxes: <u>Users must edits</u> (details are explained in this Section 4.1 Batch job).
- **Black boxes:** Numbers need to be entered using specific computing rules, which are automatically conducted by this software. Thus, users don't need to enter (for details, see **Appendix B**).
- For all others: Default values/names will be used. Thus, users don't need to enter.

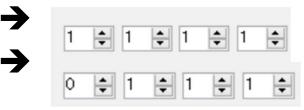
Data (YEAR, CPUE CATCH in tons)
Users need to make this data set
(see slide #28)

To start, click menu (1), then entry window will appear (below).

Users need to enter 5 items.

	Create input file		
	Input item	Example	Edit
1	Title name	swo	sm
2	Estimate flags (1=yes or 0=no -> fix) (B1/K, MSY, K, q)	0111	1 • 1 • 1 • 1
3	Intrinsic population growth rate (r)	0.27	3
4	Data (YEAR, CPUE AND CATCH)		
			OK Cancel

① is self-explanatory. 2^{4} are explained in slides #21~#27.

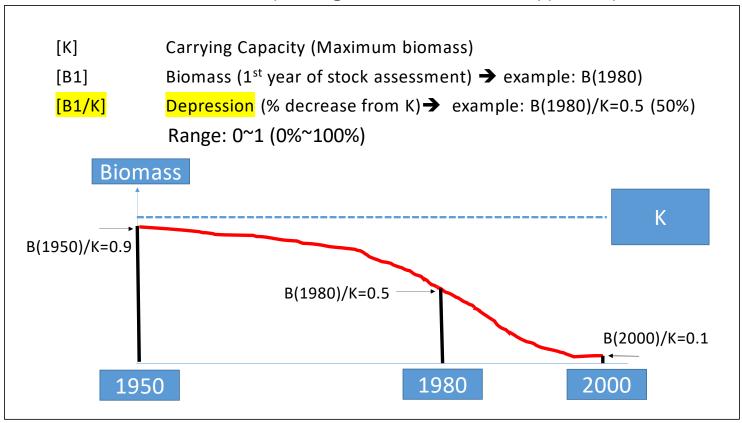

② What are Estimate flags (1=yes or 0=no \rightarrow fix) (B1/K, MSY, K, q)?

4 parameters (B1/K, K, MSY & q) need to be estimated. flag=1 (yes to estimate) or flag=0 (no estimate and fix some values) For example,

B1/K, MSY, K, q

If estimate all 4 parameters

If no estimate B1/K (fix some value)



Normally at the beginning, all 4 parameters will be estimated. If no convergences (all 4 parameters cannot be estimated)...

→ 1 or 2 parameters will be fixed to get convergences (see #37- #41 & #43 for details)

Relevant information on ② What is B1/K (start guess or fixed value)(0 to 1)?

If there are fisheries

Users need to assign one value → Example: B1=B(1980)=0.5

Relevant information on ②
What is q (catchability coefficient) (efficiency of catch).

If gear A catches 2 times higher than gear B in the same effort, q=1.0 (gear A) and q=0.5 (gear B)

Gear A is 2 times efficient to catch same amount of catch in the same effort than Gear B

4. Running software: 4.1 Batch job Relevant information on ② Assigning initial seeding values for B1/K, MSY, K and q (Batch job)

MSY & K (carrying capacity) → initial guess values & Min/Max values q (catchability) → initial guess value

Refer to next slide

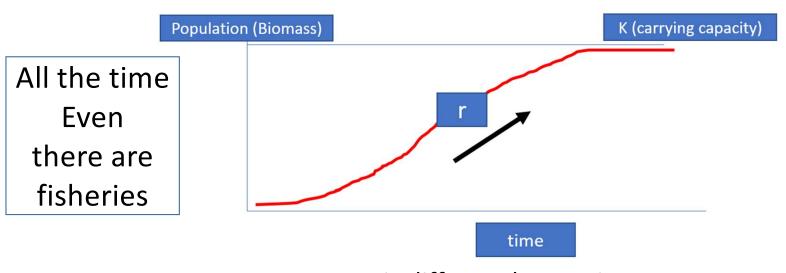
Computing rules are applied.

This soft will automatically compute and assign.

Thus users don't need to enter, but they understand the background.

Relevant information on 2

Definition of initial seeding values for 3 parameters (MSY, K and q)

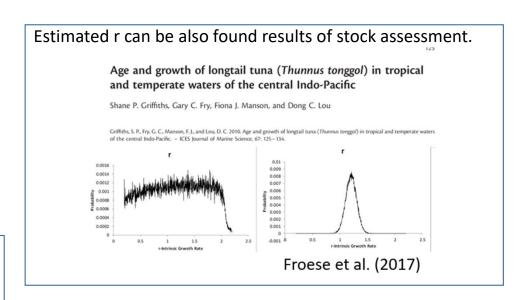

(note) This software will automatically compute these values using definition (below) and assign to the batch job.

Thus, users do not need to do this work, but need to understand the meanings.

Parameter	Min	Start	Max
MSY Average catch of		1/2 of Max catch	Maximin Catch
	3 lowest annual catches		
K 1.1 times of Max MSY		1.1 times of Min K	4(Schaefer)*Max (MSY)/r
			(*)
q		0.2*Ave CPUE/Ave catch	
(**)		(average in last 5 years)	

^(*) K=(constant for Schaefer model)*MSY/r, where r is the intrinsic population growth rate (see slide #27-#28)

Relevant information on ③
What is the intrinsic population growth rate (r)?
Speed of population increase


r is different by species long live species → smaller r short live species → larger r

4. Running software: 4.1 Batch job intrinsic population growth rate (r)

r can be found FAO FishBase and/or Literatures

Table (below) shows examples
Range and selection of representative r
(LOT: longtail tuna and KAW: Kawakawa)

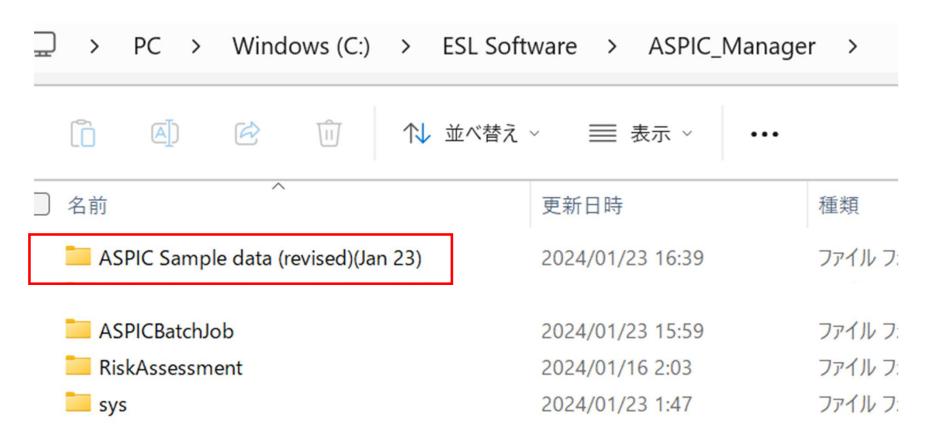
Area	Reference	sp	this WS (ave	area	source	r														
World wide	Fishbase	Sp	Ocean)			0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4
Indian Ocean	Zhou and Sharma (2014)		0.99	world wide	Fish base				0.32											
Indian Ocean	IOTC (2015)	LOT		Indian Ocean	Zhou and Shama (2014)										0.94					
World wide	Fishbase				IOTC(2015)										1.03					
Indian Ocean	Sharma (2013)		1.34	world wide	Fish base							0.57								
Indian Ocean	Zhou and Sharma (2014)	KAW		Indian Ocean	Shama (2013)													-		1.37
				mulan occan	IOTC(2015)														1.3	Г

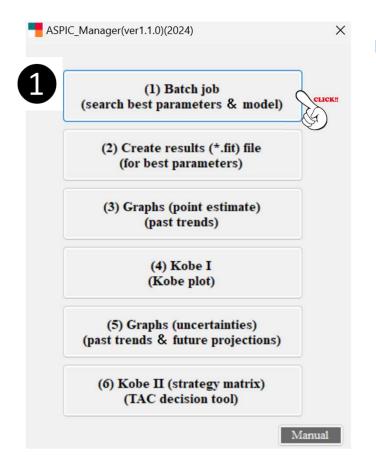
4

What is Data (YEAR, CPUE, CATCH)?

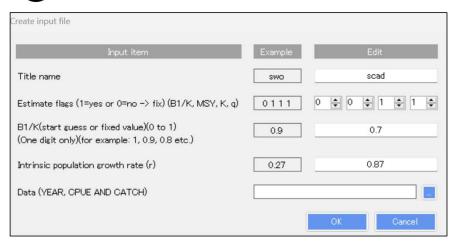
Make input file (excel)
(e.g. test.xlsx)
Put the file in working folder

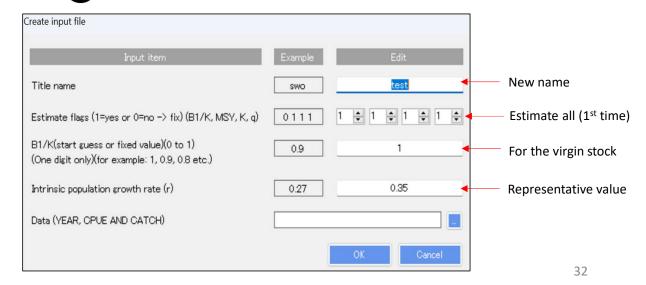
Missing CPUE value = -1

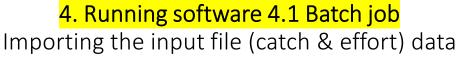

At least latest 4 consecutive years of CPUE data is needed, otherwise ASPIC will not run.

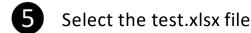

4	Α	В	С				
1	YEAR	CPUE	CATCH				
2	1950	-1	3646				
3	1951	-1	2581				
4	1961	-1	4381				
5	1962	-1	5342				
6	1963	-1	10190				
7	1964	380	11258				
8	1965	240	8652				
9	1966	229	9349				
10	1967	278	9107				
11	1968	220	9172				
12	1969	197	9203				
13	1970	219	9495				
14	1971	-1	5266				
15	1972	-1	4766				
16	1973	-1	6074				
17	1974	-1	6362				
18	1975	350	8839				

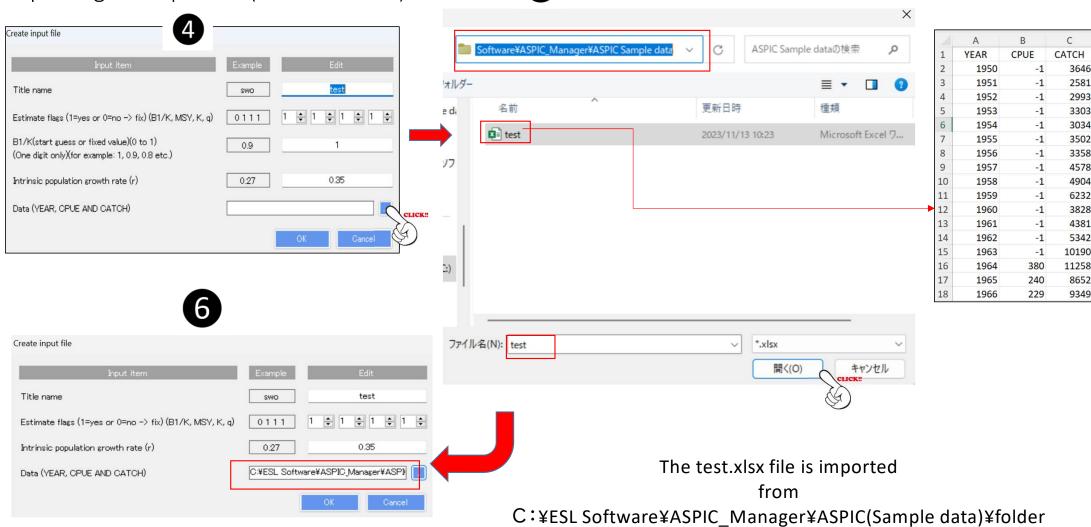
Catch (tons)


Now we will practice using Sample data (Revised)

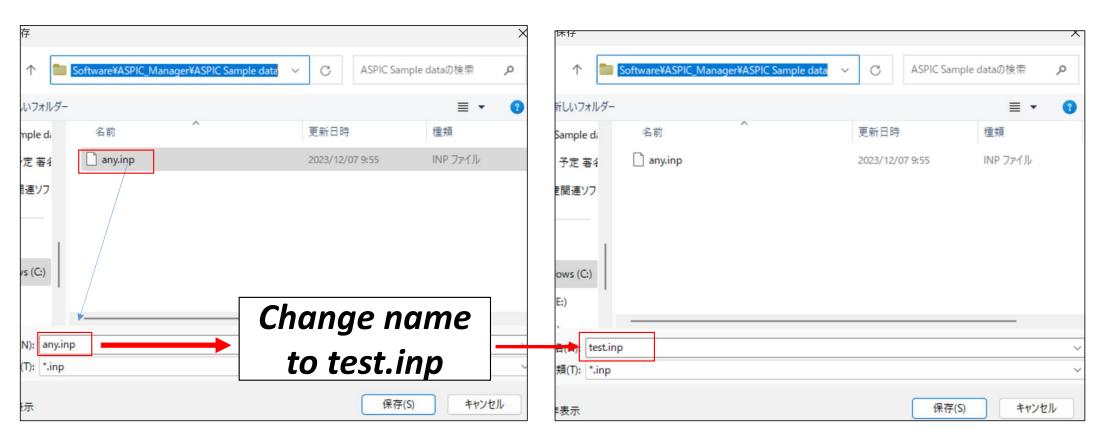

4. Running software : 4.1 Batch job Starting the batch job & Set up Follow $1 \sim 11$



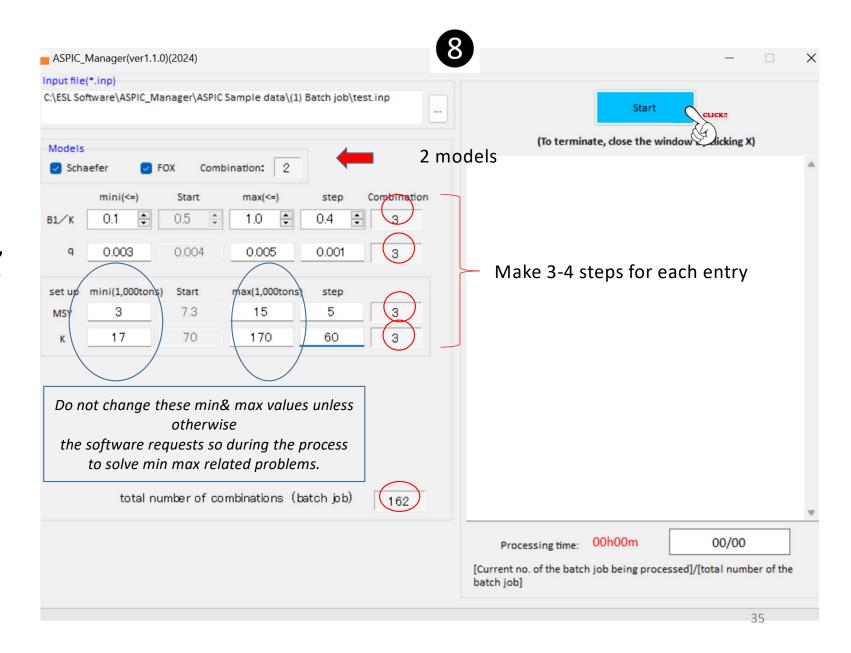

2 Previous input information will appear.



Change to the current information



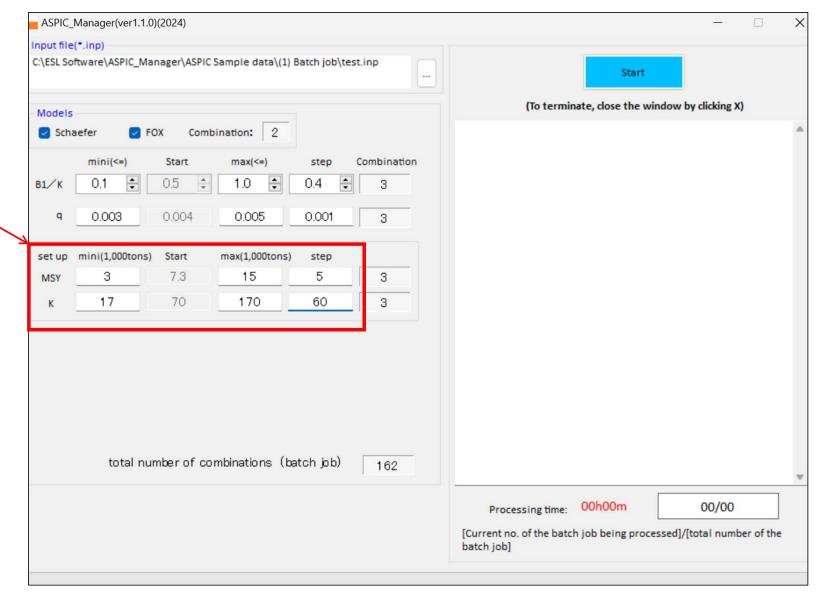
Creating the new input file by overwriting to the any previous input file. Example(below) any.inp → test.inp



4. Running software4.1 Batch jobSetting up entriesfor the batch job

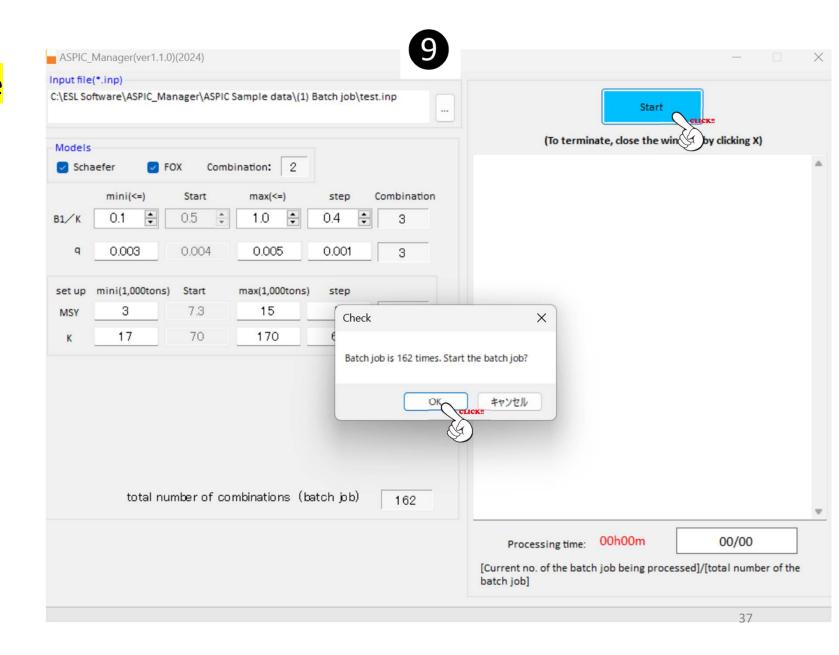
After creating the (new) test.inp file, the batch job window will appear.

Edit entries
3-4 steps
for each entry
(B1/K, q. MSY, K)

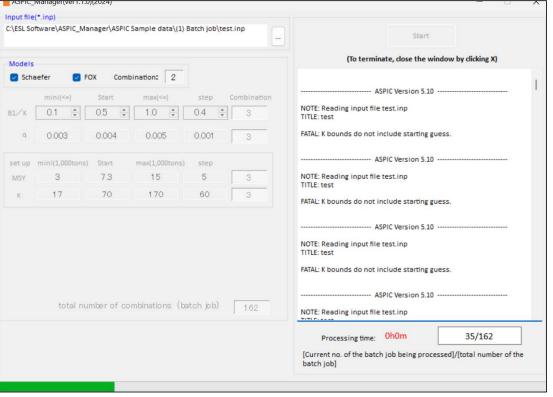

162 combinations (runs)

Important note

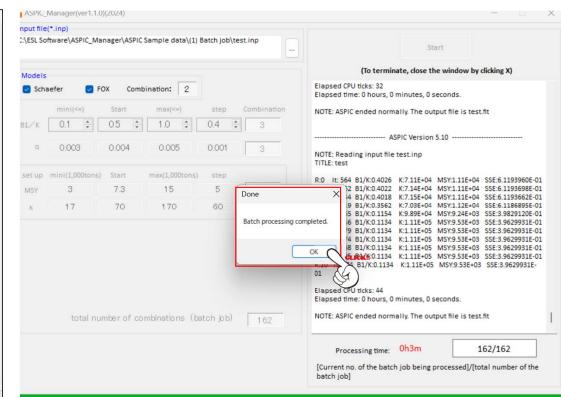
Even when values of MSY & K for mini, start & max are valid, for some cases, there will be warning messages for invalid values and no results.


This is caused by r values. In such case, try <u>other</u> r values, then there will be <u>no</u> warnings and results will be <u>obtained</u>.

4. Running software4.1 Batch job

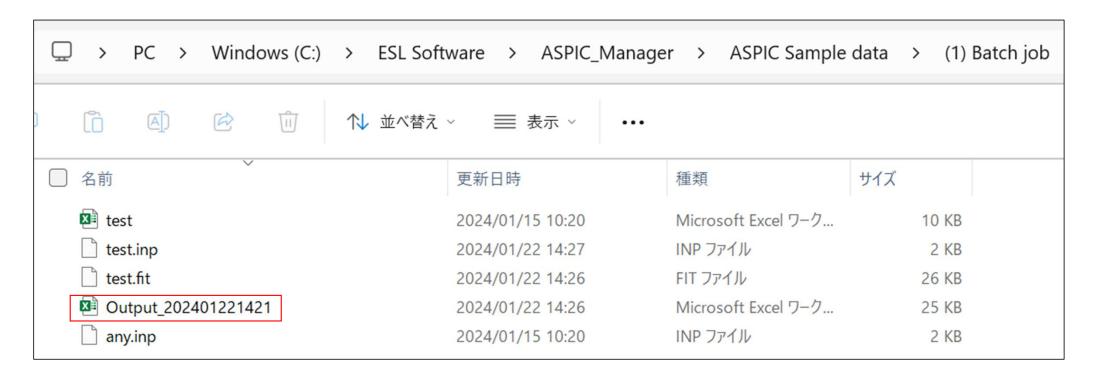

After clicking the start button, the confirmation (check) window will appear.
If OK, click OK.

If not OK, click cancel and revise entries.



4. Running software: 4.1 Batch job

Snapshot of the processing during the batch job (35th run)



Batch job done message Click OK

4. Running software: 4.1 Batch job

Results of all runs will be stored in the excel file with time stamp.

4. Running software: 4.1 Batch job Results

Results (Excel file) (2 sheets) → "Converged" & "Not converged/Errors" Users will use the "Converged" sheet to select the best parameters (see next slide).

If no results in "Converged sheet", users need to fix one parameter & re-run the batch job (see #38-#40 for details)

Α Α	B	C	D	E	5 C G S	G	, из	1	J K	L	M	N N	0	Р	Q	R	s	T		<i>V</i>	w	X	40 for deta
Time	0h2m	No of jobs	162	Average	0.0180	Min/job	1.08	Sec/job	←		Run	time	info	rma	tion								
Parameters	Model	B1/K	q	MSY	К							CITTIC											
Range (step)	Fox and Schaefer	0.8-1	0.003-0.005	3-15	23-170																		
Flag (0: fixed / 1:	Schaefer	by 0.1	by 0.001-3	by 5	by 60				\	_	nfor	mati	on f	or th	ne ba	atch	job						
estimate) Weight unit (1,000 tons)										9	See t	he ne	xt sli	de, ł	ow t	to de	cide	the b	est	parai	mete	rs us	ng results.
Combination								-		1					Ī .	Results		1	ĺ	Ī		T	
No	B1/K	MSY (min)	MSY (start)	MSY (max)	K(min)	K(start)	K(max)	q	R2 🐷	RMS 🕌	r [Est]	Model 🕌	B1/K [Est]	MSY [Est]	K [Est]	q [Est]	Current catch	TBmsy [Est]	TB [Est]	Fmsy [Est]	B/Bmsy [Est]	F/Fmsv [Est]	note
13	0.8	3	8	15	23	83	170	0.003	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58	ASPIC ended normally.
14	0.8	3	8	15	23	83	170	0.004	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58	ASPIC ended normally.
15	0.8	3	8	15	23	83	170	0.005	0.524	0.175	0.3432	Schaefer	0.113	9.533	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
16	0.8	3	8	15	23	140	170	0.003	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
17	0.8	3	8	15	23	140	170	0.004	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
18	0.8	3	8	15	23	140	170	0.005	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
22	0.8	3	13	15	23	83	170	0.003	0.524	0.175	0.3436	Schaefer	0.113	9.534	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58	ASPIC ended normally.
23	0.8	3	13	15	23	83	170	0.004	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
24 25	0.8	3	13 13	15 15	23	83 140	170 170	0.005	0.524	0.175	0.3436	Schaefer Schaefer	0.113	9.534 9.534	111	0.0066	12.79 12.79	55.52 55.52	31.7	0.172	0.472	2.58	ASPIC ended normally.
26	0.8	3	13	15	23	140	170	0.003	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58	ASPIC ended normally. ASPIC ended normally.
27	0.8	3	13	15	23	140	170	0.005	0.524	0.175	0.3436	Schaefer	0.113	9.534	111	0.0066	12.79	55.52	31.7	0.172	0.473	2.58	ASPIC ended normally.
40	0.9	3	8	15	23	83	170	0.003	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
41	0.9	3	8	15	23	83	170	0.004	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
42	0.9	3	8	15	23	83	170	0.005	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.51	31.69	0.172	0.473	2.58	ASPIC ended normally.
43	0.9	3	8	15	23	140	170	0.003	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
44	0.9	3	8	15	23	140	170	0.004	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58	ASPIC ended normally.
45	0.9	3	8	15	23	140	170	0.005	0.524	0.175	0.3432	Schaefer	0.113	9.533	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
49	0.9	3	13	15	23	83	170	0.003	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
50	0.9	3	13	15	23	83	170	0.004	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
51	0.9	3	13	15	23	83	170	0.005	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.52	31.7	0.172	0.473	2.58	ASPIC ended normally.
52 53	0.9	3	13 13	15 15	23	140 140	170 170	0.003	0.524	0.175	0.3433	Schaefer Schaefer	0.113	9.534 9.534	111.1 111.1	0.0066	12.79 12.79	55.53 55.53	31.7 31.7	0.172	0.472	2.58	ASPIC ended normally.
54	0.9	3	13	15	23	140	170	0.004	0.524	0.175	0.3436	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.52	31.69	0.172	0.472	2.58	ASPIC ended normally. ASPIC ended normally.
67	1	3	8	15	23	83	170	0.003	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58	ASPIC ended normally.
68	1	3	8	15	23	83	170	0.003	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
69	1	3	8	15	23	83	170	0.005	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.51	31.69	0.172	0.473	2.58	ASPIC ended normally.
70	1	3	8	15	23	140	170	0.003	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58	ASPIC ended normally.
< >	Conv	/erged	Not	conver	ged or	170	+	r								: 0	1	r				40	

4. Running software: 4.1 Batch job How to decide the best parameters using results

Step 1: Sort R2: descending & RMS: ascending order.

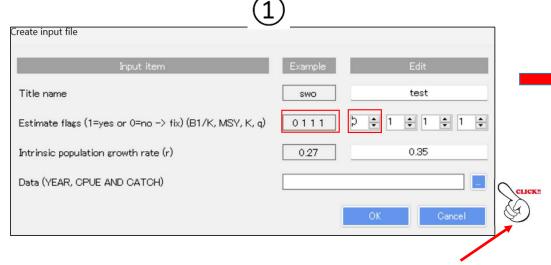
R2: Correlation coefficient and RMS: Root Mean Square Error

→ R2: Higher and RMS: lower better

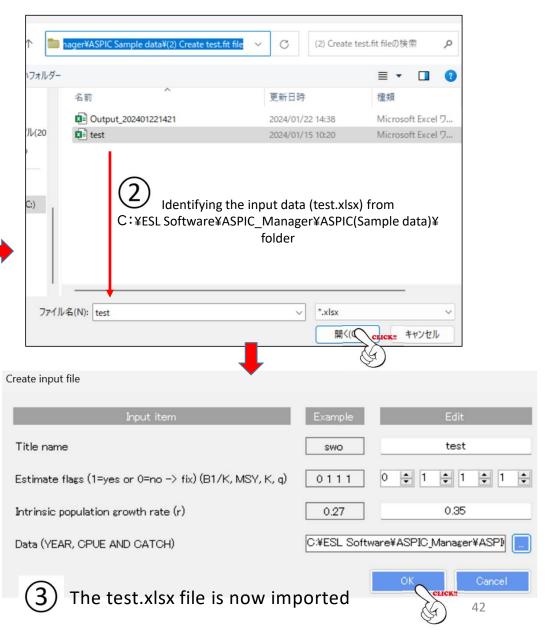
Step 2 Check B1/K if OK.

For this case, B1/K=0.113 is too low as it is he virgin stock (should be close to 1).

	Results													
	R2	RMS	r [Est] ▼	Model	B1/K	MSY	K	q	Current	TBmsy	ТВ	Fmsy	B/Bmsy	F/Fmsy
_	NZ w				[Est] ▼	[Est] 🔻	[Est] ▼	[Est] ▼	catch 🔻	[Est] ▼				
Best answer ———	0.524	0.175	0.3435	Schaefer	0.113	9.533	111	0.0066	12.79	55.52	31.7	0.172	0.472	2.58
_	0.524	0.175	0.3436	Schaefer	0.113	9.534	111	0.0066	12.79	55.52	31.69	0.172	0.472	2.58
	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.69	0.172	0.472	2.58
	0.524	0.175	0.3433	Schaefer	0.113	9.534	111.1	0.0066	12.79	55.53	31.7	0.172	0.472	2.58

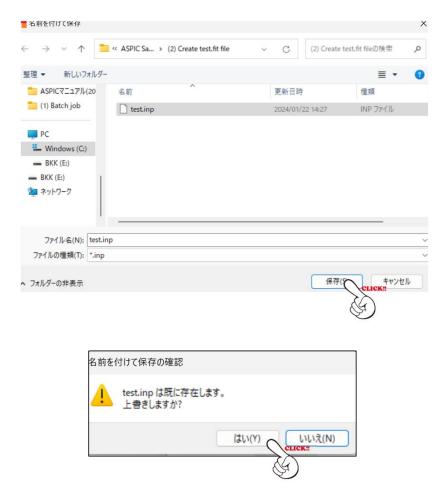

We cannot accept this result. As next step, we will fix B1/K=1 & do batch job again

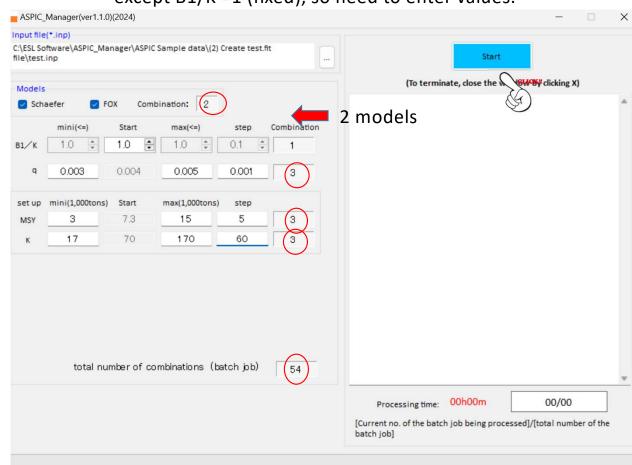
4. Running software: 4.1 Batch job


Fix B1/K =1 because of the virgin stock

(B1 ≈ K)

then, re-run the batch job (same process)

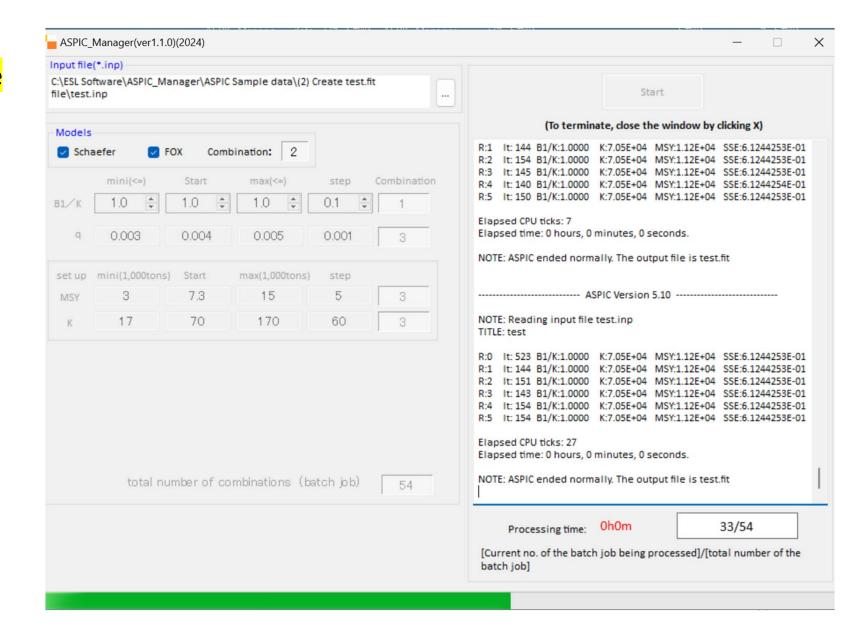

Click to Import the input data


4. Running software: 4.1 Batch job

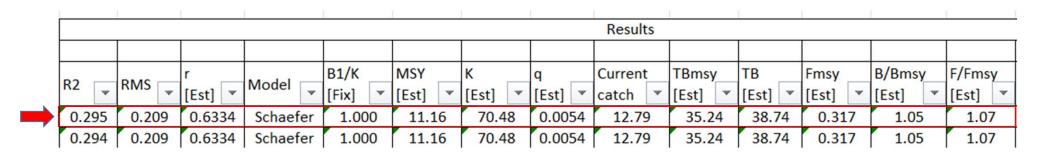
Fix B1/K =1 because of the virgin stock (B1 ≈ K), then <u>re-run the batch job</u>

4 Save the same input file name as before (test.inp) by overwriting

5 Edit the parameters as before except B1/K =1 (fixed), so need to enter values.



4. Running software4.1 Batch job


Re-running the batch job by fixing B1/K=1

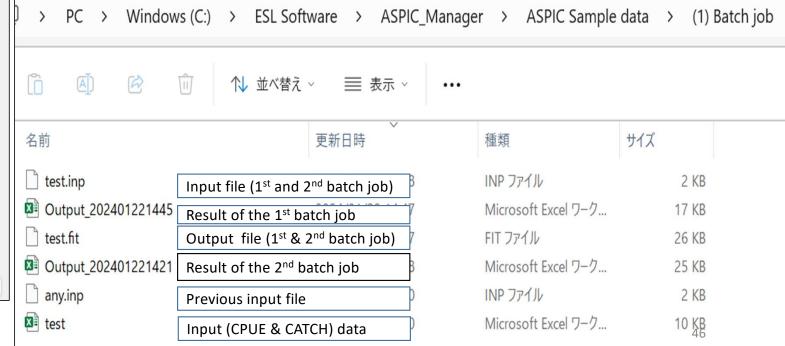
because
the initial run did not
produce plausible
results
and

the virgin stock is assumed (B1/K).

4. Running software: 4.1 Batch job

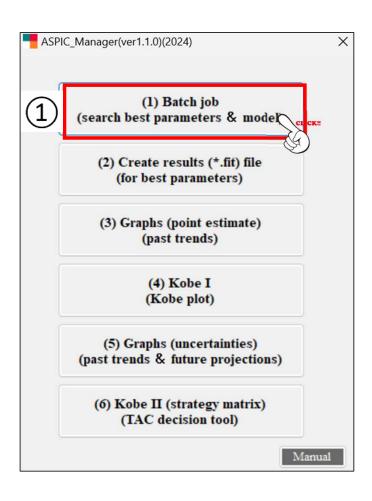


Run with the highest R2 & the Lowest RMS was selected as the best answer

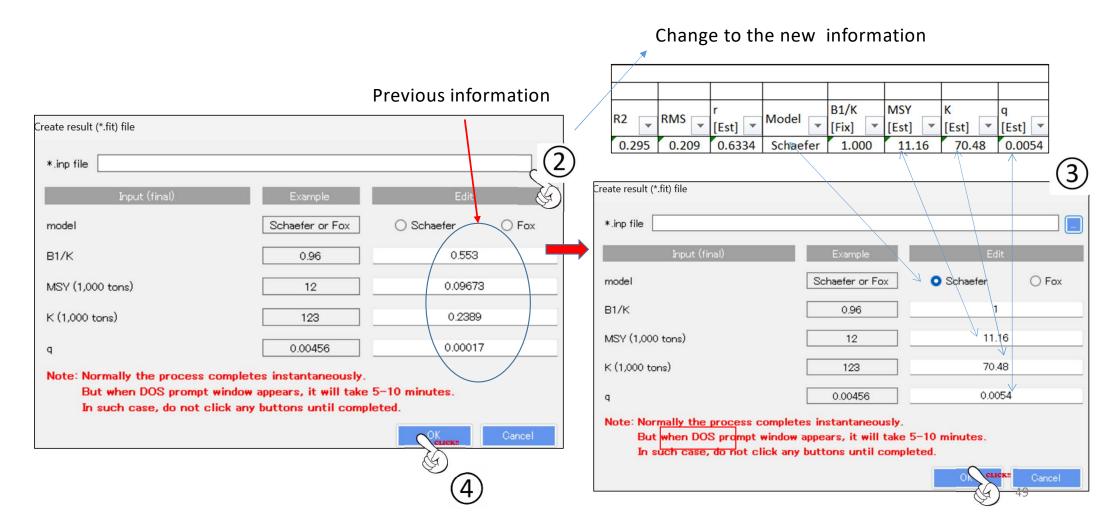

Estimated r=0.63 different from r=0.35

4. Running software:4.1 Batch job

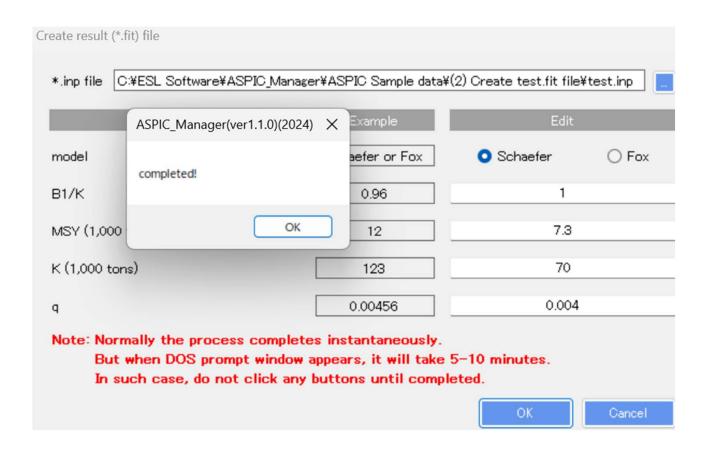
ASPIC Sample data
List of INPUT & OUTPUT files for menu (1) Batch job



4. Running software: 4.1 Batch job Summary


- Data QC → check catch & CPUE
- Batch job is the most fundamental part of ASPIC (80%).
- Need to estimate the best solution for 4 parameters & Model, i.e.,
 - → 4 parameters(B1/K, MSY, M & q) and Model (Schaefer or Fox)
- In the 1st trail, estimate all 4 parameters (1111) and Model.
- If no answers (convergences), check data.
- If data OK, fix 1 parameter (e.g., 0111).
- If still no answer, fix 2 (e.g., 0101).
- If still no→ not possible to do ASPIC (one of answers/results)

4.2 Creating results (*.fit) file for best parameters & model



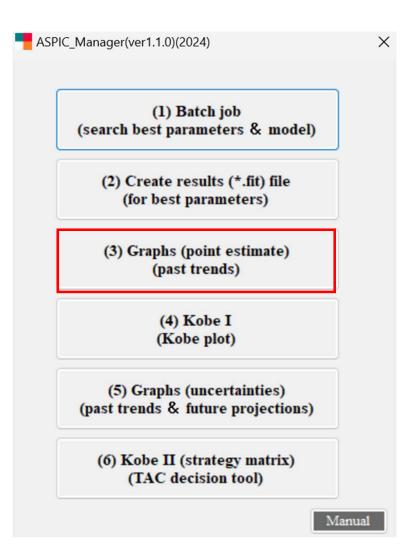
4. Running software: 4.2 Creating results (*.fit) file for best parameters & model

Using the best parameters & model selected in (1) Batch job, full numerical output (results) (*.fit file) will be obtained. The *.fit file will be used for further analyses in Menu (3) $^{\sim}$ (7)

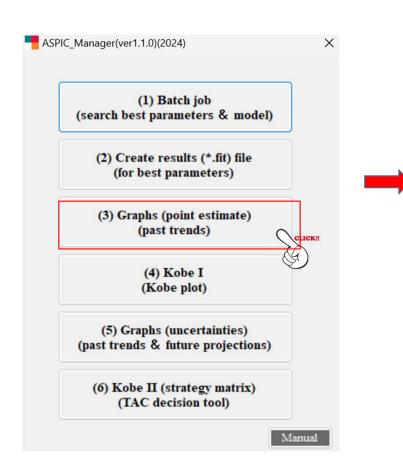
4. Running software 4.2 Creating results (*.fit) file for best parameters & model

4.2 Creating results (*.fit) file for best parameters & model ASPIC Sample data

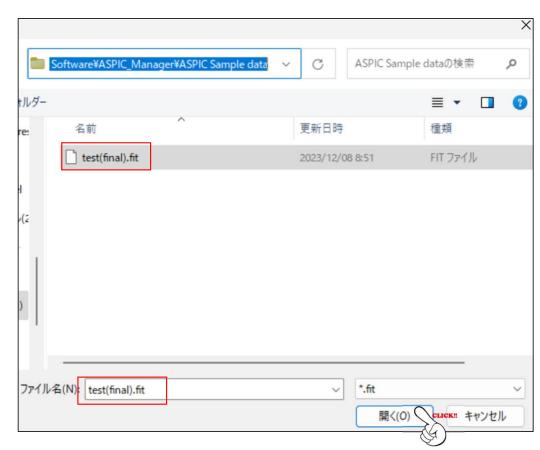
List of INPUT & OUTPUT files for menu (2) Create test.fit file


PC > Windows (C:) > ESL Software > ASPIC_Manager > ASPIC Sample data >

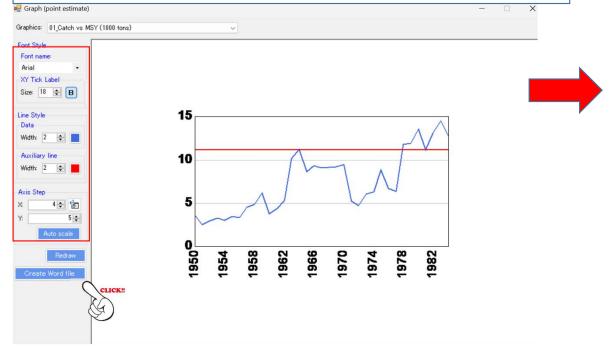
≣≣表示∨

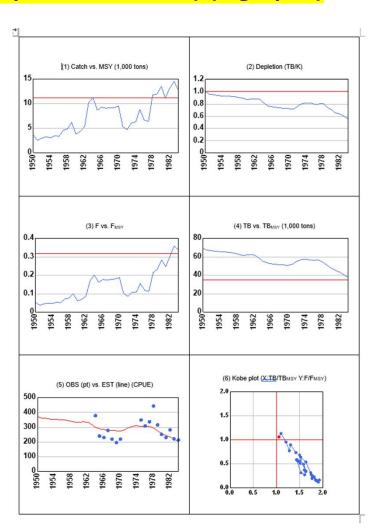

↑↓並べ替え~

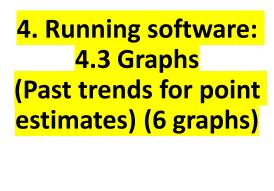
4. Running software
4.3 Graphs

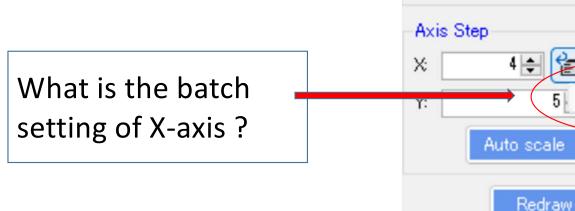

(Past trends for point estimates)
(6 graphs)

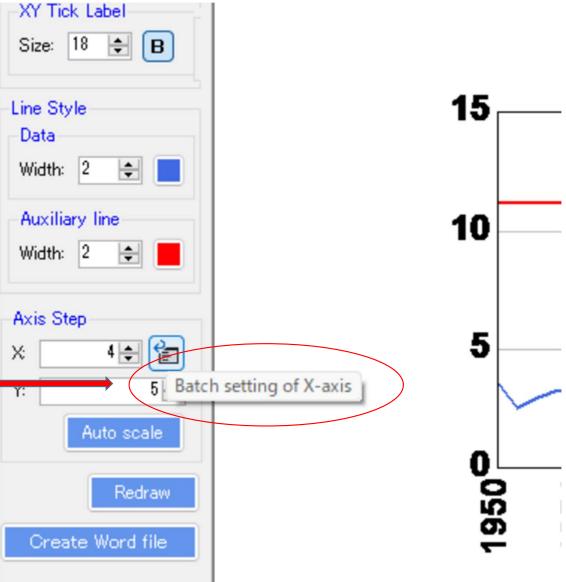
4.3 Graphs (Past trends for point estimates) (6 graphs)

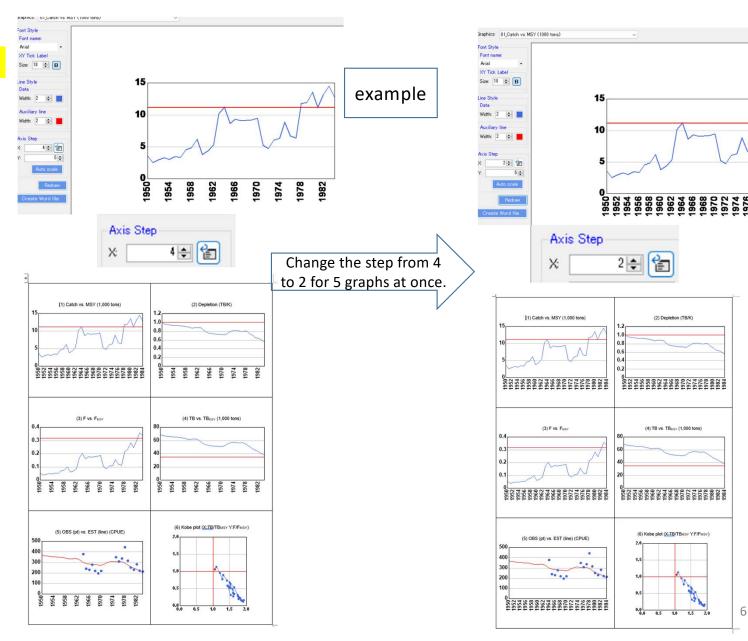



Open *(final).fit file → test(final).fit (our example)



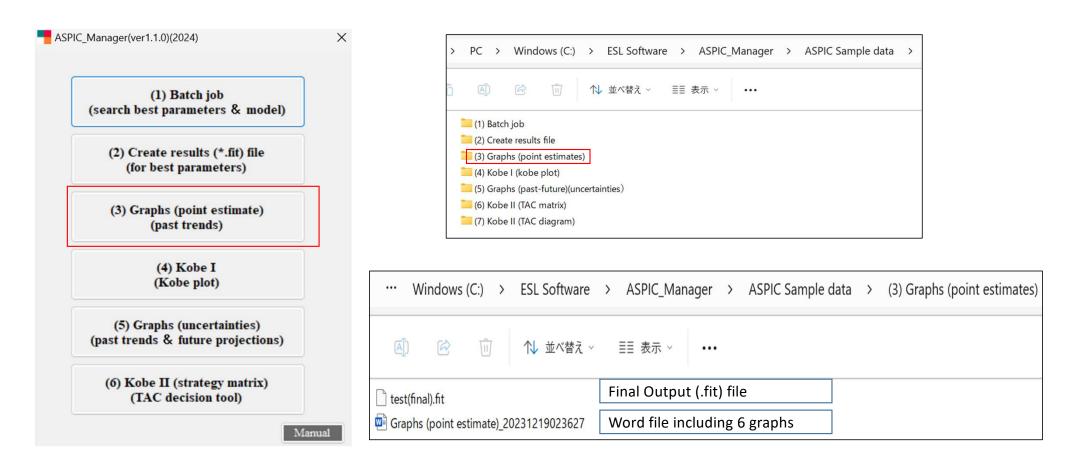

4. Running software: 4.3 Graphs (Past trends for point estimates) (6 graphs)


After clicking "Open" (previous slide), the 1st graph (catch vs. MSY) appears (below). Users can edit 6 graphs one by one using graph settings functions (red box) available on left except X-axis batch settings for 5 graphs (for details, see next slide). After completing editions, click "Create word file" bottom. Then all 6 graphs will be made and saved in the word file with time stamp Graphs (point estimate)_20231117162058

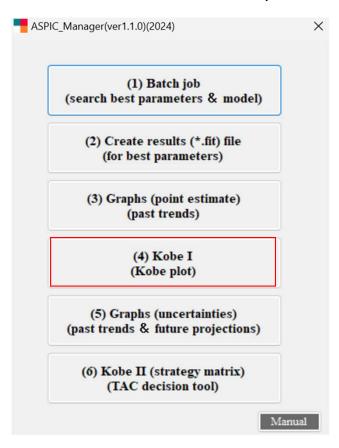


4. Running software 4.3 Graphs (Past trends for point estimates) (6 graphs)

What is X-axis batch setting?


Normally Y axis are different scales, thus optimum steps need to be adjusted one by one.

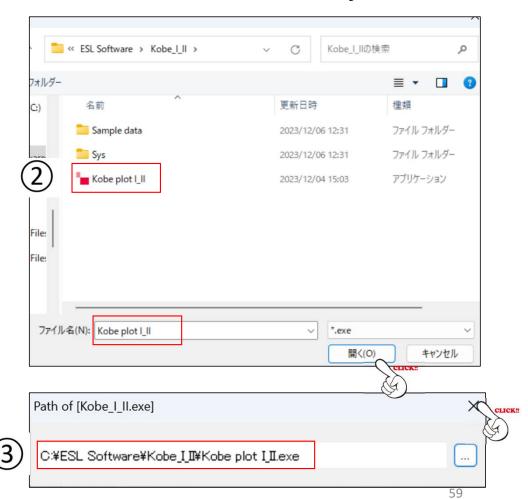
However, X axis is common all for years except the last Kobe plot. Thus this x-axis batch setting can change steps for 5 graphs automatically.



4. Running software 4.3 Graphs (Past trends for point estimates) (6 graphs)

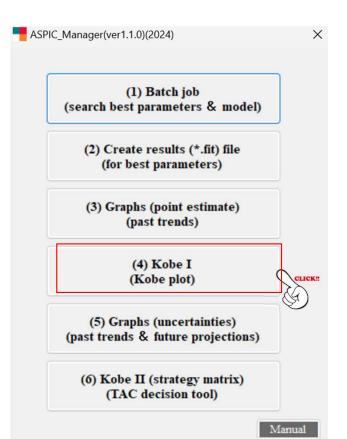
ASPIC Sample data List of INPUT & OUTPUT files for menu (3) Graphs (point estimate)

4. Running software: 4.4 Kobe I (Kobe plot) Produce Kobe plot with uncertainties (confidence surface)

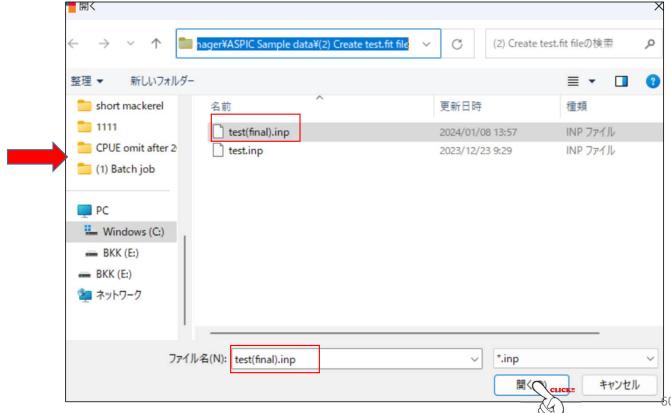

4. Running software: 4.4 Kobe I (Kobe plot) Locate Kobe_I_II.exe file

IMPORTANT → This will be done only when users use this menu at the first time

After clicking the menu,


- Users will see the 1st window requesting to locate Path of [Kobe_I_II.exe] then Click.
- (2) Identify the file
- (3) Confirm window will appear. & close window

Path of [Kobe_I_II.exe] X



4. Running software: 4.4 Kobe I (Kobe plot)

Produce Kobe plot with uncertainties (confidence surface)using *(final).inp

Import the test(final).inp file (example) to conduct bootstrap (1,000 times) to estimate uncertainties in the final stock assessment year (take some time). Bootstrap is one of methods to estimate uncertainties by re-sampling the data used.

4. Running software: 4.4 Kobe I (Kobe plot)

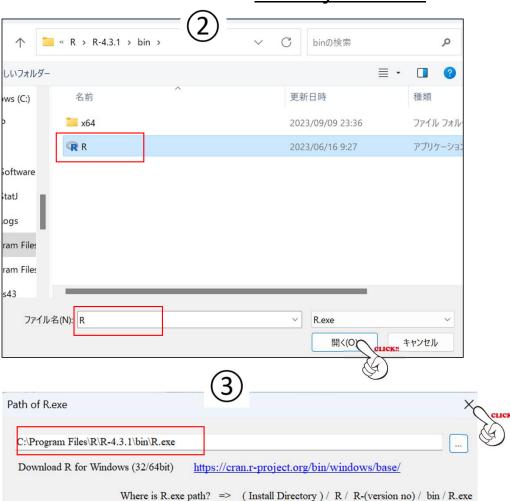
If users see the following Note, please change K values to make Kobe plot.

Note: K for initial value is too high or too low. Expand Min K and/or Max K values in the batch job window and try again.

4. Running software 4.4 Kobe I (Kobe plot)

Snapshot
during processing
the bootstrap
by the DOS prompt

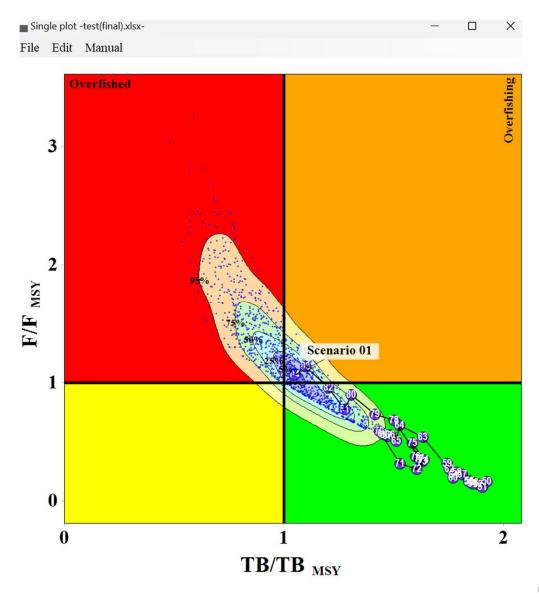
For this example, it will take 15-30 minutes (some case 2-5 hours) depending on data set & PC performance.


```
© C:¥ESL Software¥ASPIC Mana∈ ×
               B1/K: 1.000
                              K:1.404E+05
                                          MSY:7.920E+03
                                                         SSE:3.15192736E-01
                B1/K:
                       1.000
                             K:8.835E+04 MSY:9.929E+03
                                                         SSE:1.27911475E+00
NOTE: K estimate too small. Pending trial will be replaced.
Tr: 427 Cn: 6 B1/K: 1.000 K:6.942E+04 MSY:1.383E+04
                                                         SSE:8.32698968E-01
NOTE: K estimate too small. Pending trial will be replaced.
                B1/K: 1.000 K:5.929E+04 MSY:1.310E+04
                                                         SSE:4.09525229E-01
Tr: 429 Cn: 6
               B1/K: 1.000
                             K:4.199E+04 MSY:1.295E+04
                                                         SSE:6.99638790E-01
NOTE: K estimate too small. Pending trial will be replaced.
               B1/K: 1.000
                             K:7.274E+04 MSY:9.228E+03
                                                         SSE:8.98062412E-01
NOTE: K estimate too small. Pending trial will be replaced.
Tr: 431 Cn: 6 B1/K: 1.000 K:4.660E+04 MSY:1.247E+04 SSE:9.72638974E-01
NOTE: MSY estimate too large. Pending trial will be replaced.
                B1/K:
                      1.000
                              K:8.370E+04
                                          MSY:1.139E+04
                                                         SSE:6.20688221E-01
Tr: 433
                B1/K:
                      1.000
                              K:7.328E+04
                                          MSY:1.128E+04
             6 B1/K:
                      1.000
                              K:4.544E+04
                                          MSY:1.081E+04
                                                         SSE:5.03696928E-01
                      1.000
                              K:1.333E+05
                                          MSY:1.127E+04
                                                         SSE:3.59222518E-01
Tr: 436
                B1/K:
                      1.000
                             K:6.200E+04 MSY:1.263E+04
                                                         SSE:6.96547959E-01
NOTE: K estimate too large. Pending trial will be replaced.
Tr: 437 Cn: 6 B1/K: 1.000 K:5.776E+04 MSY:1.111E+04
                                                         SSE:5.32745343E-01
NOTE: K estimate too large. Pending trial will be replaced.
Tr: 438 Cn: 6 B1/K: 1.000 K:6.691E+04 MSY:1.151E+04
                                                         SSE:4.16226400E-01
Tr: 439 Cn: 6 B1/K: 1.000 K:8.052E+04 MSY:1.016E+04
                                                         SSE:6.06107959E-01
NOTE: MSY estimate too large. Pending trial will be replaced.
NOTE: K estimate too small. Pending trial will be replaced.
NOTE: K estimate too small. Pending trial will be replaced.
Tr: 440 Cn: 6 B1/K: 1.000 K:9.742E+04 MSY:1.056E+04
                                                         SSE:5.50004978E-01
Tr: 441 Cn: 6 B1/K: 1.000 K:1.523E+05 MSY:1.355E+04
                                                        SSE:4.26343001E-01
NOTE: MSY estimate too large. Pending trial will be replaced.
NOTE: K estimate too small. Pending trial will be replaced.
Tr: 442 Cn: 6 B1/K: 1.000 K:6.087E+04 MSY:1.199E+04 SSE:7.93617604E-01
```

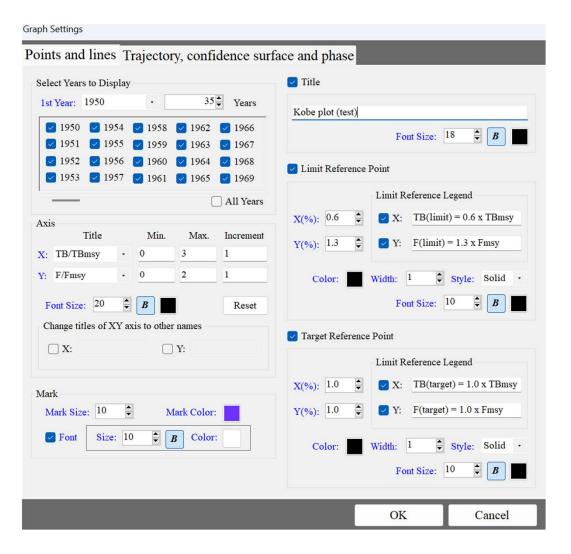
4. Running software: 4.4 Kobe I (Kobe plot) Locate R path IMPORTANT → This will be done only when users use this menu at the first time

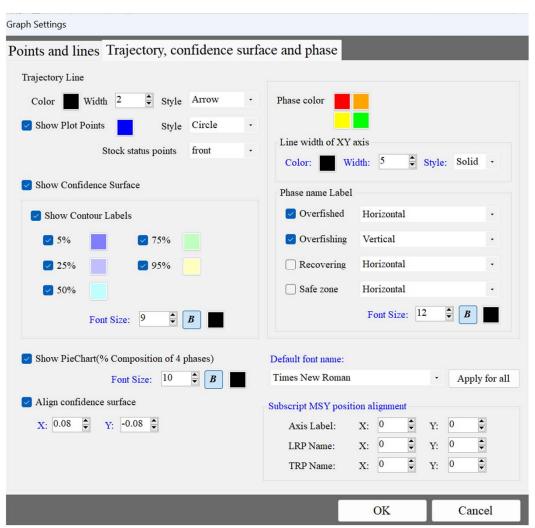
After the bootstrap is completed,

- users will see 2 windows requesting to locate the R path.
- (2) Identify and import the R.exe file
- 3 Confirm window will appear. & close window



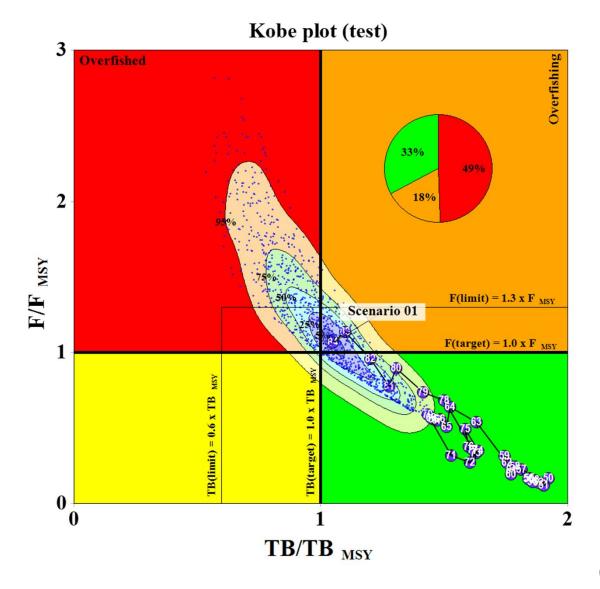
4. Running software4.4 Kobe I (Kobe plot)


After the bootstrap is completed, the default Kobe plot appears.

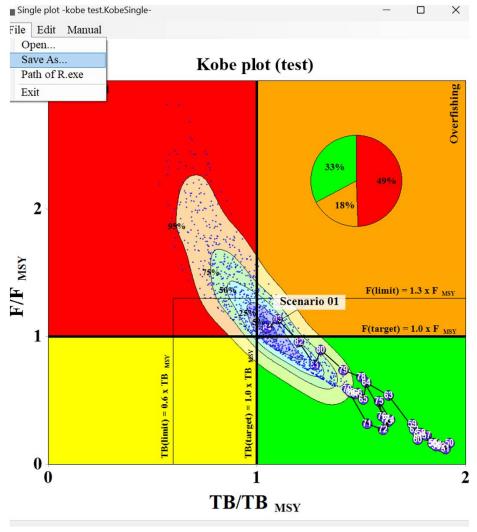

Users can edit using 2 graph setting functions to make the final plot (see next 2 slides).

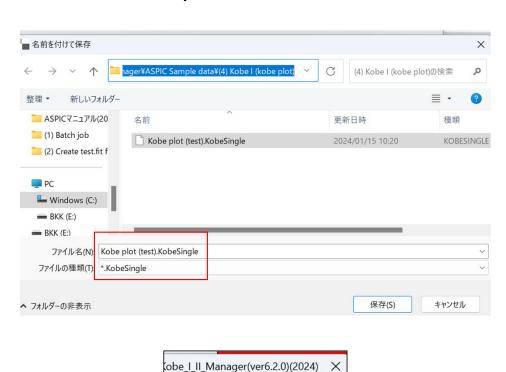
For details on graph setting functions, refer to the Kobe I+II manual.

4. Running software: 4.4 Kobe I (Kobe plot) 2 graph setting functions (for details, refer to Kobe I+II manual)



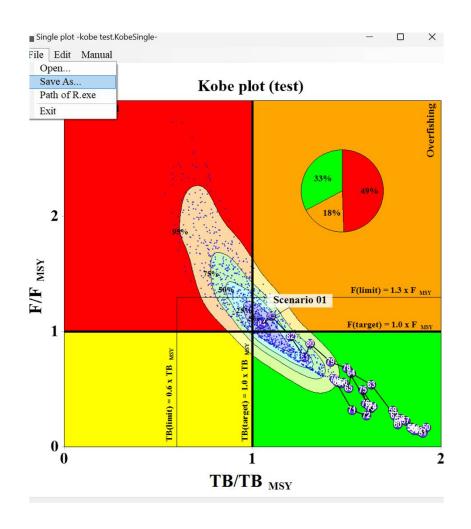
4. Running software4.4 Kobe I (Kobe plot)


Final Kobe plot (edited)

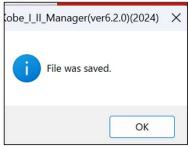

How to save? See next 2 slides

4. Running software: 4.4 Kobe I (Kobe plot)

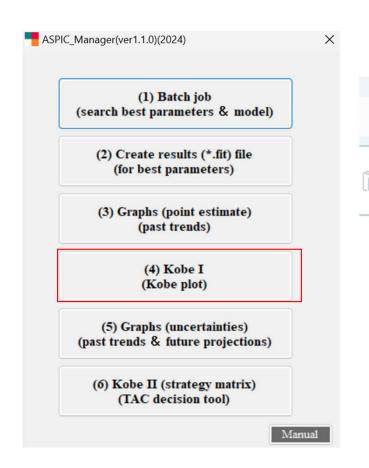
1 Save to reproduce the last plot

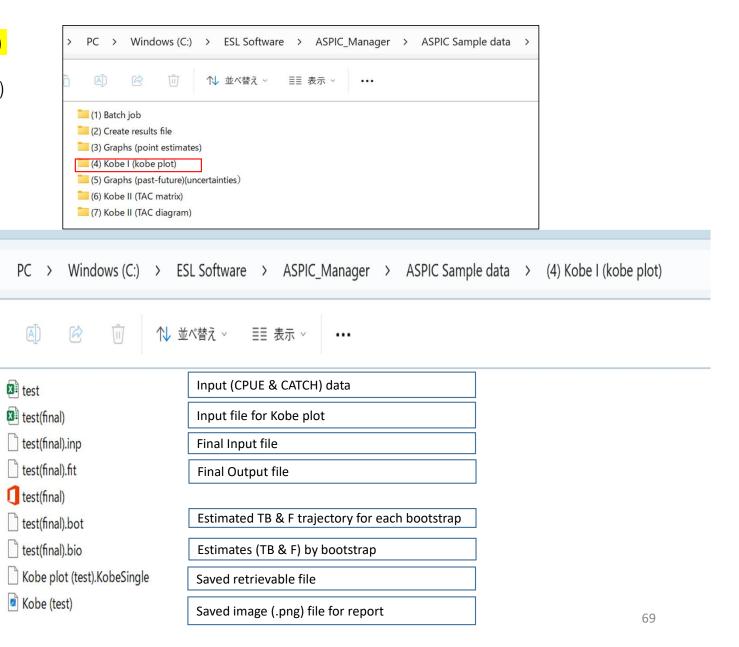

File was saved.

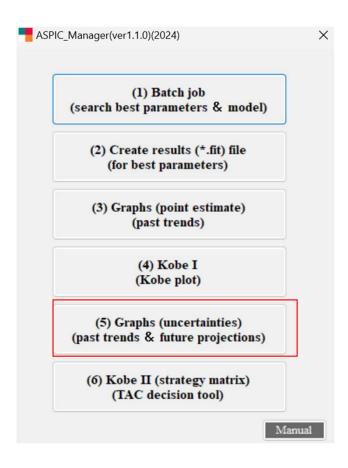
OK


4. Running software: 4.4 Kobe I (Kobe plot)

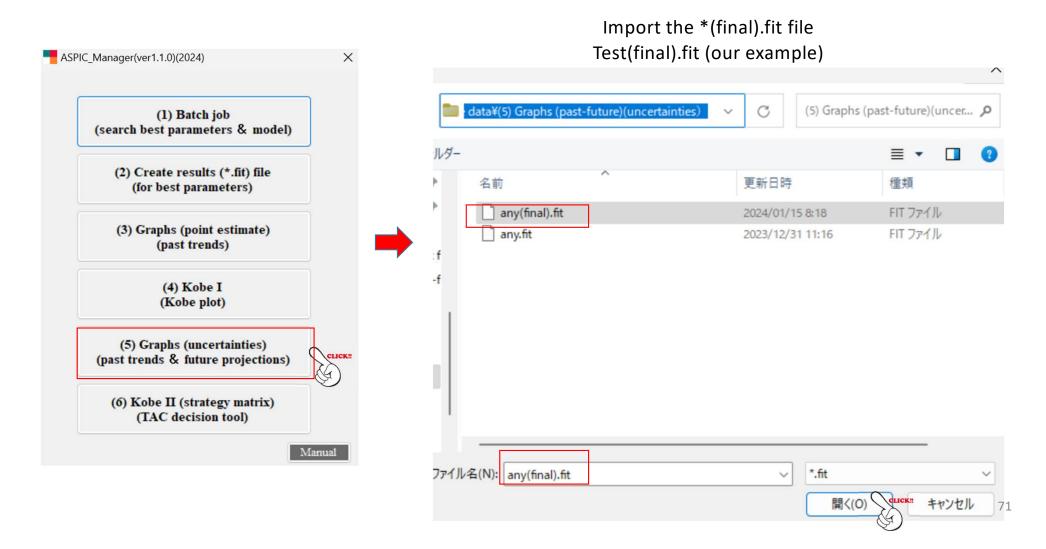
2 Save the image for your report


→ 3 types(bmp, png or emf) → *.png is recommended.

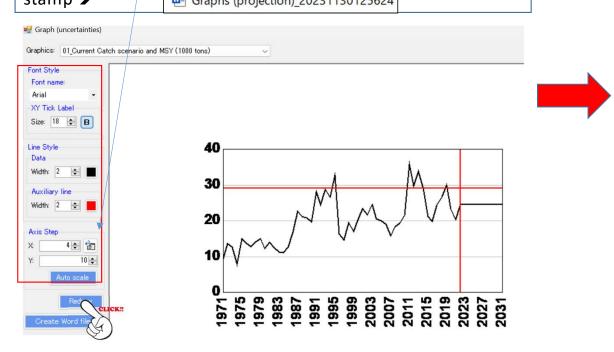


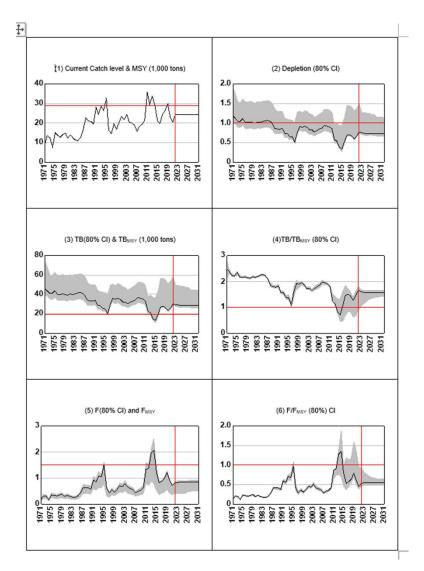


4. Running software: 4.4 Kobe I (Kobe plot) ASPIC Sample data List of INPUT & OUTPUT files for menu (4) Kobe I (Kobe plot)



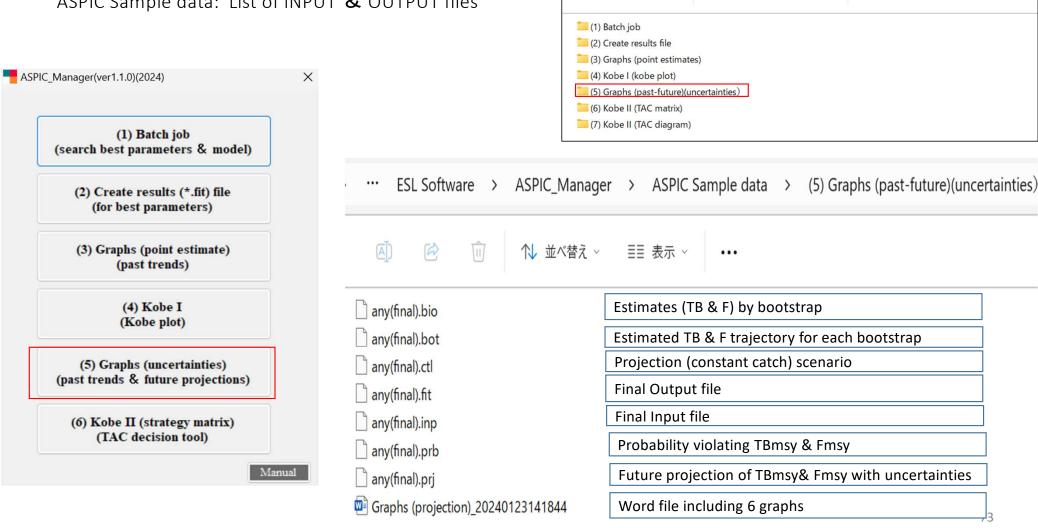
4.5 Graphs (Past trends & future projections with uncertainties)
Trends of 6 key parameters with uncertainties estimated by bootstrap


4.5 Graphs (Past trends & future projections with uncertainties)


Trends of 6 key parameters with uncertainties estimated by bootstrap (using other sample data)

4.5 Graphs (Past trends & future projections with uncertainties)

After clicking "Open" (previous slide), users will see DOS process for bootstrapping for a short time. Then, the 1st graph (catch vs. MSY) appears (below). Users can edit 6 graphs using graph settings functions available on left (red box) except x-axis batch setting (for details, see slide # 51). After completing editions, click "Create word file" bottom. Then all 6 graphs will be made and saved in the word file with time stamp

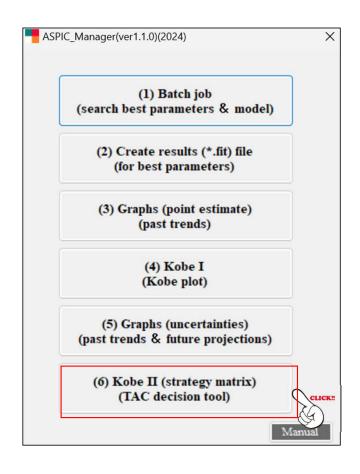


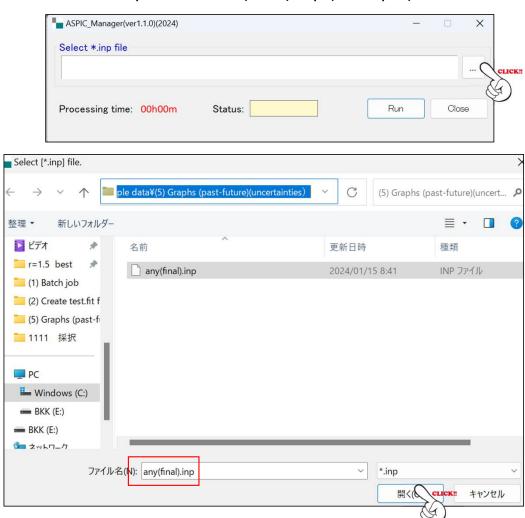
4. Running software

4.5 Graphs (Past trends & future projections with uncertainties)

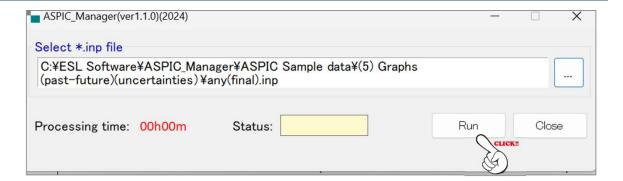
ASPIC Sample data: List of INPUT & OUTPUT files

PC > Windows (C:) > ESL Software > ASPIC Manager > ASPIC Sample data >


≣≣表示~


↑↓並べ替え~

4. Running software: 4.6 Kobe II (Strategy matrix)(TAC decision tool by risk assessment)


Probability violating TBmsy & Fmsy in 3 & 10 years if current catch level contuses based on 1,000 bootstrapping

Import the test(final).inp (example)

After importing the conformation window will appear (below)

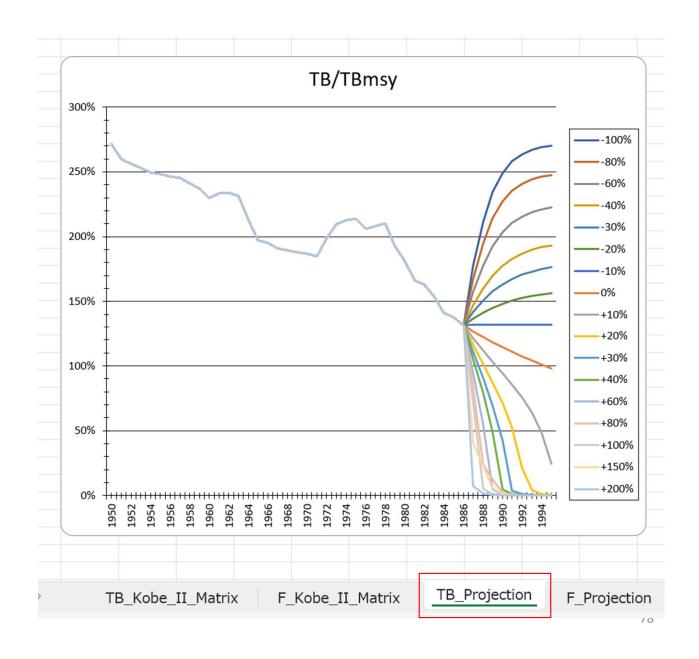
It will take 10-30 minutes (sometimes a few hours) to complete depending on the data set and PC

ASPIC_Manager(ver1.1.0)(2024)	-	- 🗆	×
Select *.inp file			
C:\text{ESL Software\text{\text{YASPIC_Manager\text{\text{\text{ASPIC Sample data\text{\text{\text{\text{\text{\text{Manager\text{\tint{\text{\tin}\text{\tex}\tint{\text{\text{\text{\text{\text{\ti}}\text{\text{\text			
Processing time: 00h00m Status:	Run	О	lose

Then, one excel sheet
(TB_F_KOBEII.xlsx)
containing
4 sheets is created.
(for the next 10 years)

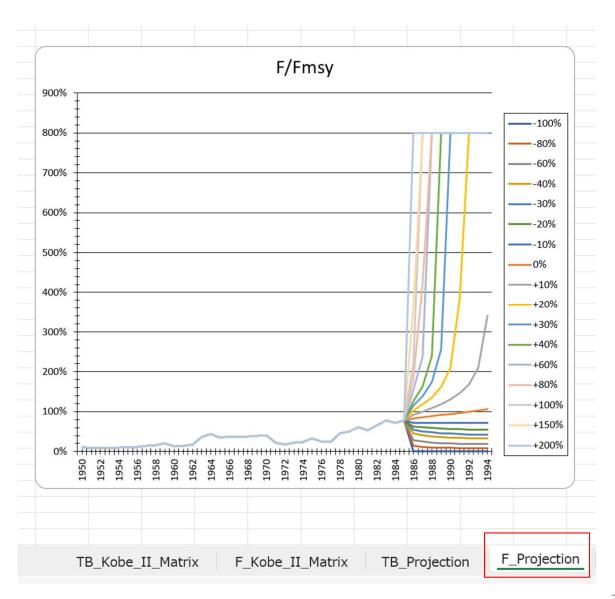
1st Sheet : TB_Kobe_II_Matrix

					C-1	le esceti						
						legend						
	Risk I	evels	Low	risk		lium risk		dium risk	High	risk		
	Prob	ably	0 - 3	25%	25 -	50%	50 -	75%	75 - 3	100%		
	%	Catch (tons)	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
	200%	40,533	36%	41%	85%	97%	100%	100%	100%	100%	100%	100%
	150%	33,778	36%	41%	79%	94%	99%	100%	100%	100%	100%	100%
% Increased from the current catch level	100%	27,022	36%	41%	71%	87%	95%	98%	99%	100%	100%	100%
	80%	24,320	36%	41%	66%	83%	91%	96%	98%	99%	100%	100%
	60%	21,618	36%	41%	61%	77%	87%	93%	96%	98%	99%	99%
	40%	18,915	36%	41%	57%	70%	80%	87%	91%	94%	95%	97%
	30%	17,564	36%	41%	54%	67%	75%	82%	87%	91%	93%	95%
	20%	16,213	36%	41%	52%	61%	70%	77%	81%	86%	89%	90%
	10%	14,862	36%	41%	49%	56%	63%	69%	75%	79%	82%	84%
* Current catch	0%	13,511	36%	41%	47%	51%	56%	60%	64%	68%	71%	74%
	-5.60%	**12,760	36%	41%	45%	47%	50%	54%	57%	59%	62%	64%
	-10%	12,160	36%	41%	43%	45%	47%	50%	52%	53%	56%	58%
	-20%	10,809	36%	41%	40%	39%	37%	37%	37%	37%	37%	38%
% decreased from the	-30%	9,458	36%	41%	35%	31%	29%	27%	24%	23%	22%	21%
current catch level	-40%	8,107	36%	41%	32%	26%	19%	16%	14%	13%	12%	11%
	-60%	5,404	36%	41%	26%	13%	8%	6%	6%	6%	6%	6%
[-80%	2,702	36%	41%	19%	6%	3%	3%	3%	3%	3%	3%
	-100%	0	36%	41%	12%	2%	1%	1%	1%	1%	1%	1%


Then, one excel sheet
(TB_F_KOBEII.xlsx)
containing
4 sheets is created.
(for the next 10 years)

2nd Sheet : F_Kobe_II_Matrix

Catch (tons) 40,533 33,778 27,022 24,320 21,618 18,915 17,564 16,213		7 risk 25% 1986 99% 96% 89% 85% 79% 71% 65%	Med low	legend dium risk 50% 1988 100% 100% 99% 97% 93% 87% 82%	high	1990 100% 100% 100% 100% 98%	_	1992 100% 100% 100% 100%	1993 100% 100% 100% 100% 100%	1994 100% 100% 100% 100%
Catch (tons) 40,533 33,778 27,022 24,320 21,618 18,915 17,564 16,213	1985 42% 42% 42% 42% 42% 42% 42%	1986 99% 96% 89% 85% 79% 71% 65%	1987 100% 99% 96% 93% 88% 80%	1988 100% 100% 99% 97% 93% 87%	high 50 - 1989 100% 100% 100% 99% 96%	1990 100% 100% 100% 100% 98%	75 - : 1991 100% 100% 100% 100%	100% 1992 100% 100% 100% 100%	100% 100% 100% 100%	100% 100% 100% 100%
Catch (tons) 40,533 33,778 27,022 24,320 21,618 18,915 17,564 16,213	1985 42% 42% 42% 42% 42% 42% 42%	1986 99% 96% 89% 85% 79% 71% 65%	1987 100% 99% 96% 93% 88% 80%	1988 100% 100% 99% 97% 93% 87%	1989 100% 100% 100% 99% 96%	1990 100% 100% 100% 100% 98%	1991 100% 100% 100% 100% 99%	1992 100% 100% 100% 100%	100% 100% 100% 100%	100% 100% 100% 100%
(tons) 40,533 33,778 27,022 24,320 21,618 18,915 17,564 16,213	42% 42% 42% 42% 42% 42% 42%	99% 96% 89% 85% 79% 71% 65%	100% 99% 96% 93% 88% 80%	100% 100% 99% 97% 93% 87%	100% 100% 100% 99% 96%	100% 100% 100% 100% 98%	100% 100% 100% 100% 99%	100% 100% 100% 100% 100%	100% 100% 100% 100%	100% 100% 100% 100%
33,778 27,022 24,320 21,618 18,915 17,564 16,213	42% 42% 42% 42% 42% 42%	96% 89% 85% 79% 71% 65%	99% 96% 93% 88% 80%	100% 99% 97% 93% 87%	100% 100% 99% 96%	100% 100% 100% 98%	100% 100% 100% 99%	100% 100% 100% 100%	100% 100% 100%	100% 100% 100%
27,022 24,320 21,618 18,915 17,564 16,213	42% 42% 42% 42% 42%	89% 85% 79% 71% 65%	96% 93% 88% 80%	99% 97% 93% 87%	100% 99% 96%	100% 100% 98%	100% 100% 99%	100% 100% 100%	100% 100%	100%
24,320 21,618 18,915 17,564 16,213	42% 42% 42% 42%	85% 79% 71% 65%	93% 88% 80%	97% 93% 87%	99% 96%	100% 98%	100% 99%	100% 100%	100%	100%
21,618 18,915 17,564 16,213	42% 42% 42%	79% 71% 65%	88% 80%	93% 87%	96%	98%	99%	100%		-
18,915 17,564 16,213	42% 42%	71% 65%	80%	87%			Transport of the Control of the Cont		100%	1009
17,564 16,213	42%	65%			91%	94%	96%			100
16,213			75%	82%			2010	97%	98%	99%
	42%			02.0	87%	91%	93%	95%	96%	97%
44.063		60%	69%	76%	81%	86%	89%	91%	92%	93%
14,862	42%	54%	60%	68%	73%	77%	81%	84%	86%	88%
13,511	42%	48%	51%	56%	61%	64%	68%	72%	75%	77%
**12,760	42%	42%	45%	48%	51%	54%	57%	60%	62%	64%
12,160	42%	39%	41%	43%	45%	48%	50%	52%	54%	55%
10,809	42%	30%	28%	28%	27%	26%	27%	27%	27%	27%
9,458	42%	21%	15%	11%	9%	8%	8%	8%	8%	9%
8,107	42%	10%	4%	2%	1%	1%	1%	1%	1%	1%
5,404	42%	1%	0%	0%	0%	0%	0%	0%	0%	0%
2,702	42%	0%	0%	0%	0%	0%	0%	0%	0%	0%
0	42%	0%	0%	0%	0%	0%	0%	0%	0%	0%
n	10,809 9,458 8,107 5,404 2,702	10,809 42% 9,458 42% 8,107 42% 5,404 42% 2,702 42% 0 42%	10,809 42% 30% 9,458 42% 21% 8,107 42% 10% 5,404 42% 1% 2,702 42% 0% 0 42% 0%	10,809 42% 30% 28% 9,458 42% 21% 15% 8,107 42% 10% 4% 5,404 42% 1% 0% 2,702 42% 0% 0% 0 42% 0% 0%	10,809 42% 30% 28% 28% 9,458 42% 21% 15% 11% 8,107 42% 10% 4% 2% 5,404 42% 1% 0% 0% 2,702 42% 0% 0% 0% 0 42% 0% 0% 0%	10,809 42% 30% 28% 28% 27% 9,458 42% 21% 15% 11% 9% 8,107 42% 10% 4% 2% 1% 5,404 42% 1% 0% 0% 0% 2,702 42% 0% 0% 0% 0% 0 42% 0% 0% 0% 0%	10,809 42% 30% 28% 28% 27% 26% 9,458 42% 21% 15% 11% 9% 8% 8,107 42% 10% 4% 2% 1% 1% 5,404 42% 1% 0% 0% 0% 0% 2,702 42% 0% 0% 0% 0% 0% 0 42% 0% 0% 0% 0% 0%	10,809 42% 30% 28% 28% 27% 26% 27% 9,458 42% 21% 15% 11% 9% 8% 8% 8,107 42% 10% 4% 2% 1% 1% 1% 5,404 42% 1% 0% 0% 0% 0% 0% 2,702 42% 0% 0% 0% 0% 0% 0% 0 42% 0% 0% 0% 0% 0% 0%	10,809 42% 30% 28% 28% 27% 26% 27% 27% 9,458 42% 21% 15% 11% 9% 8% 8% 8% 8,107 42% 10% 4% 2% 1% 1% 1% 1% 5,404 42% 1% 0% 0% 0% 0% 0% 0% 2,702 42% 0% 0% 0% 0% 0% 0% 0% 0 42% 0% 0% 0% 0% 0% 0% 0%	10,809 42% 30% 28% 28% 27% 26% 27% 27% 27% 9,458 42% 21% 15% 11% 9% 8% 8% 8% 8% 8,107 42% 10% 4% 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 0%

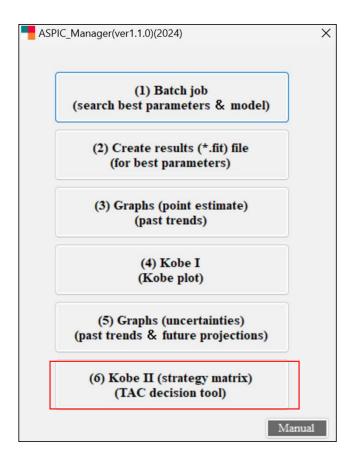

Then, one excel sheet
(TB_F_KOBEII.xlsx)
containing
4 sheets is created.
(for the next 10 years)

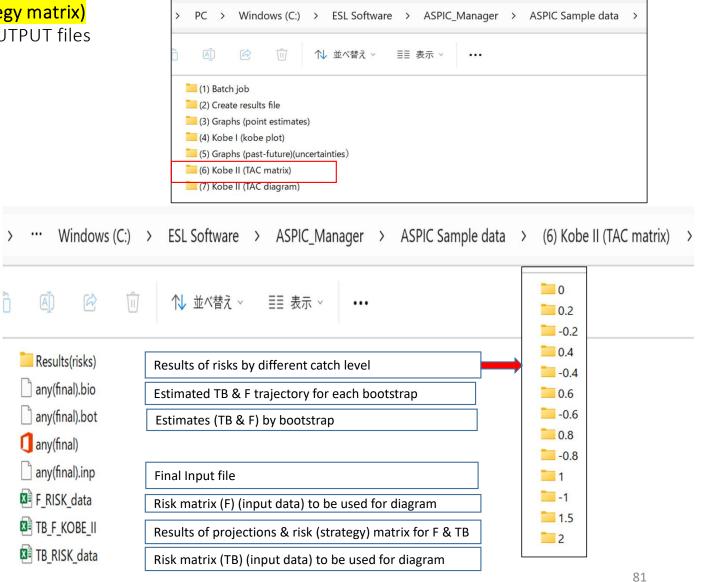
3rd Sheet : TB_Projection

Then, one excel sheet
(TB_F_KOBEII.xlsx)
containing
4 sheets is created.
(for the next 10 years)

4th sheet : F_Projection

Note:


Some users might have green triangles in the upper left corner of the cell There are a few methods to clear. Please refer to the Excel manual.


80%

					Color	legend						
	Risk I	evels	Low	risk	10000000	lium risk	Med high	lium risk	High	risk		
	Prob	ably	0 -	25%	25 -	50%	50 -	75%	75 - :	100%		
				,		,		,		,		
	%	Catch (tons)	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
	200%	40,533	36%	41%	85%	97%	100%	100%	100%	100%	100%	1009
% Increased from the current catch level	150%	33,778	36%	41%	79%	94%	99%	100%	100%	100%	100%	1009
	100%	27,022	36%	41%	71%	87%	95%	98%	99%	100%	100%	1009
	80%	24,320	36%	41%	66%	83%	91%	96%	98%	99%	100%	1009
	60%	21,618	36%	41%	61%	77%	87%	93%	96%	98%	99%	99%
	40%	18,915	36%	41%	57%	70%	80%	87%	91%	94%	95%	97%
	30%	17,564	36%	41%	54%	67%	75%	82%	87%	91%	93%	95%
	20%	16,213	36%	41%	52%	61%	70%	77%	81%	86%	89%	90%
	10%	14,862	36%	41%	49%	56%	63%	69%	75%	79%	82%	84%
* Current catch	0%	13,511	36%	41%	47%	51%	56%	60%	64%	68%	71%	74%
	-5.6%	**12,760	36%	41%	45%	47%	50%	54%	57%	59%	62%	64%
	-10%	12,160	36%	41%	43%	45%	47%	50%	52%	53%	56%	58%
	-20%	10,809	36%	41%	40%	39%	37%	37%	37%	37%	37%	38%
6 decreased from the	-30%	9,458	36%	41%	35%	31%	29%	27%	24%	23%	22%	21%
current catch level	-40%	8,107	36%	41%	32%	26%	19%	16%	14%	13%	12%	11%
	-60%	5,404	36%	41%	26%	13%	8%	6%	6%	6%	6%	6%
	-80%	2,702	36%	41%	19%	6%	3%	3%	3%	3%	3%	3%
	-100%	0	36%	41%	12%	2%	1%	1%	1%	1%	1%	1%

(Note) * Average catch for 3 last assessments years ** MSY level

4. Running software: 4.6 Kobe II (Strategy matrix) ASPIC Sample data: List of INPUT & OUTPUT files

Appendix A: History of development

ASPIC Batch job (Grid search) menu-driven software (single menu)

→ Equivalent to Menu (1) in ASPIC_Manager

 Ver 1.1
 February 13
 2018

 Ver 1.1 (REV)
 February 18
 2018

 Ver 2.0
 August 6
 2018

ASPIC_Manager (all-in-one)

Ver 1.0.0	August	2023	6 menus (original)
Ver 1.0.7	September	2023	6 menus (Batch job improved)
Ver 1.1.0	April	2024	6 menus (Risk matrix improved)

Appendix B Results of the batch job: test(final).fit (next 4 slides)

Users will not use results as ASPIC_Manager software uses results in this file.

Majority of results are self-explanatory.

If users have difficulties to understand meanings of some of results, refer to the original ASPIC manual (Prager, 2004) or contact [MENU] Menu-driven stock assessment software developing team.

								Friday, 08 Dec 2	2023 at	Page 08:51	
ASPIC A	Surplus	-Producti	ion Model I	ncluding Cova	riates (Ver.	5.10)					
Author:	101 Pi		and Road; B	enter for Coa eaufort, Nort		es and Habitat 28516 USA	Research	,	FIT pro FOX m YLD con SSE opt	odel mo	ode ing
Reference:				te of extensi Fishery Bul		equilibrium 4-389.	A	ASPIC User's Manu gratis f			
CONTROL PAR	RAMETERS	FROM IN	NPUT FILE)					Input file:	test(f	inal).	inŗ
Number of y Number of o Objective of Relative co Relative co Maximum F a Bounds fact	years ar data ser function onv. cri onv. cri onv. cri onv. cri allowed tor for	nalyzed: ries: n: terion (s terion (r terion (e in fittir generaliz	simplex): restart): effort): ng:	3 Least square 1.000E-0 3.000E-0 1.000E-0 8.00	5 1 s 8 8 4	Bounds on K Monte Carlo Random numbe Identical co	otstrap tria Y (min, max): (min, max): search mode, r seed: nvergences r eps for nume	2.300E+6 2.300E+6 trials: required in fittierical integration	04 0 ing:	1.500E- 1.700E- 200 393323	+0 00 38
Model Co	ode Ex	ponent	Bmsy/K	B1/K	MSY	К	q1	Objective fn.			
_	0 0	2.00 1.00	0.500 0.368		1.116E+04 1.276E+04	7.048E+04 6.562E+04	5.391E-03 6.107E-03				
		port desc	cribes Fox	model w/ adju	sted bounds:	MSY(1.40E+03,	8.93E+04),	K(1.47E+02, 3.38	BE+07)		
NOTE: Follo	owing re	*									

oss comr	onent number and title	Weighted SSE	N	Weighted MSE	Current weight	Inv. var. weight	R-squared in CPUE
-033 COM	When thimber and title	331		IISL	weight	wergitt	III CFOL
	SSE in yield	0.000E+00			4 0005 00		
Loss(0) Loss(1)		0.000E+00 6.046E-01	1 17	N/A 4.031E-02		N/A 1.000E+00	0.306
	Croe Catch	0.0401-01		4.0316-02	1.0001+00	1.0001+00	0.300
TOTAL OBJ	ECTIVE FUNCTION, MSE, RMSE: 6	.04591901E-01		4.319E-02	2.078E-01		
Estimated	contrast index (ideal = 1.0):	0.4938		C* = (Bmax-	Bmin)/K		
Estimated	nearness index (ideal = 1.0):	0.8617		N* = 1 - m	in(B-Bmsy) /K		
MODEL PAR	AMETER ESTIMATES (NON-BOOTSTRAPPED)						
Parameter	,	Estimate	Use	r/pgm guess	2nd guess	Estimated	User guess
31/K	Starting relative biomass (in 1950)	1.000E+00		1.000E+00	7.978E-01	0	
1SY	Maximum sustainable yield	1.276E+04		1.160E+04	6.352E+03	1	
(Maximum population size	6.562E+04		7.040E+04	3.811E+04	1	
ohi	Shape of production curve (Bmsy/K)	0.3679		0.3679		0	
	Catchability Coefficients by Data Seri	36					
7(1)	CPUE Catch	6.107E-03		5.400E-03	4.750E-01	1	1
	T and DERIVED PARAMETER ESTIMATES (NON-			5.400E-03	4.750E-01	1	;
	IT and DERIVED PARAMETER ESTIMATES (NON-				4.750E-01		eral formul
MANAGEMEN	IT and DERIVED PARAMETER ESTIMATES (NON-	BOOTSTRAPPED)					
MANAGEMEN Parameter	IT and DERIVED PARAMETER ESTIMATES (NON-	BOOTSTRAPPED) EStimate			tic formula	Gene	eral formul
MANAGEMEN Parameter MSY Bmsy	IT and DERIVED PARAMETER ESTIMATES (NON-	BOOTSTRAPPED) Estimate 1.276E+04			tic formula	Gene	eral formul n**(1/(1-n)
MANAGEM <mark>EN</mark>	T and DERIVED PARAMETER ESTIMATES (NON-	Estimate 1.276E+04 2.414E+04			tic formula K/2	Gene	
MANAGEMEN Parameter BISY BIMSY Emsy	Maximum sustainable yield Stock biomass giving MSY Fishing mortality rate at MSY	Estimate 1.276E+04 2.414E+04 5.287E-01			tic formula K/2	Gene K*r	eral formul n**(1/(1-n)
MANAGEMEN Parameter MSY Bmsy Fmsy	Maximum sustainable yield Stock biomass giving MSY Fishing mortality rate at MSY Exponent in production function	Estimate 1.276E+04 2.414E+04 5.287E-01 1.0001			tic formula K/2 MSY/Bmsy	Gene K*r	eral formul 1**(1/(1-n) MSY/Bms
MANAGEMEN Parameter MSY Emsy Emsy	Maximum sustainable yield Stock biomass giving MSY Fishing mortality rate at MSY Exponent in production function Fletcher's gamma	Estimate 1.276E+04 2.414E+04 5.287E-01 1.0001 2.718E+04			tic formula K/2 MSY/Bmsy	Gene K*r	eral formul 1**(1/(1-n) MSY/Bms
IANAGEMEN Arameter ISY Imsy msy Msy Msy ISS Instruction Instr	Maximum sustainable yield Stock biomass giving MSY Fishing mortality rate at MSY Exponent in production function Fletcher's gamma Ratio: B(1985)/Bmsy	Estimate 1.276E+04 2.414E+04 5.287E-01 1.0001 2.718E+04 1.376E+00			tic formula K/2 MSY/Bmsy	Gene K*r	n**(1/(1-n) MSY/Bms
warameter warameter wasy wasy msy ./Bmsy ./Fmsy msy/F.	Maximum sustainable yield Stock biomass giving MSY Fishing mortality rate at MSY Exponent in production function Fletcher's gamma Ratio: B(1985)/Bmsy Ratio: F(1984)/Fmsy	Estimate 1.276E+04 2.414E+04 5.287E-01 1.0001 2.718E+04 1.376E+00 7.194E-01 1.390E+00		Logis	tic formula K/2 MSY/Bmsy	Gene K*r [n**(n/(r	n**(1/(1-n) MSY/Bms
IANAGEMEN arameter isy msy ./Bmsy ./Fmsy msy/F. .(Fmsy)	Maximum sustainable yield Stock biomass giving MSY Fishing mortality rate at MSY Exponent in production function Fletcher's gamma Ratio: B(1985)/Bmsy Ratio: F(1984)/Fmsy Ratio: Fmsy/F(1984) Approx. yield available at Fmsy in 198as proportion of MSY	Estimate 1.276E+04 2.414E+04 5.287E-01 1.0001 2.718E+04 1.376E+00 7.194E-01 1.390E+00		Logis	tic formula K/2 MSY/Bmsy MSY*B./Bmsy	Gene K*r [n**(n/(r	n**(1/(1-n) MSY/Bms n-1))]/[n-1
ANAGEMEN arameter SY msy ./Bmsy ./Fmsy msy/F. .(Fmsy)	Maximum sustainable yield Stock biomass giving MSY Fishing mortality rate at MSY Exponent in production function Fletcher's gamma Ratio: B(1985)/Bmsy Ratio: F(1984)/Fmsy Ratio: Fmsy/F(1984) Approx. yield available at Fmsy in 198as proportion of MSY Equilibrium yield available in 1985	Estimate 1.276E+04 2.414E+04 5.287E-01 1.0001 2.718E+04 1.376E+00 7.194E-01 1.390E+00 5.1.756E+04 1.376E+00 1.196E+04		Logis	tic formula K/2 MSY/Bmsy	Gene K*r [n**(n/(r	n**(1/(1-n) MSY/Bms n-1))]/[n-1
IANAGEMEN arameter isy msy ./Bmsy ./Fmsy msy/F. .(Fmsy)	Maximum sustainable yield Stock biomass giving MSY Fishing mortality rate at MSY Exponent in production function Fletcher's gamma Ratio: B(1985)/Bmsy Ratio: F(1984)/Fmsy Ratio: Fmsy/F(1984) Approx. yield available at Fmsy in 198as proportion of MSY	Estimate 1.276E+04 2.414E+04 5.287E-01 1.0001 2.718E+04 1.376E+00 7.194E-01 1.390E+00 5.1.756E+04 1.376E+00		Logis	tic formula K/2 MSY/Bmsy MSY*B./Bmsy	Gene K*r [n**(n/(r	 **(1/(1-n) MSY/Bms n-1))]/[n-1
NANAGEMEN Parameter SY Bmsy msy S./Bmsy	Maximum sustainable yield Stock biomass giving MSY Fishing mortality rate at MSY Exponent in production function Fletcher's gamma Ratio: B(1985)/Bmsy Ratio: F(1984)/Fmsy Ratio: Fmsy/F(1984) Approx. yield available at Fmsy in 198as proportion of MSY Equilibrium yield available in 1985	Estimate 1.276E+04 2.414E+04 5.287E-01 1.0001 2.718E+04 1.376E+00 7.194E-01 1.390E+00 5.1.756E+04 1.376E+00 1.196E+04 9.368E-01	series	Logis 4*MSY*(B/	tic formula K/2 MSY/Bmsy MSY*B./Bmsy	Gene K*r [n**(n/(r	n**(1/(1-n) MSY/Bms n-1))]/[n-1

test Page 2

ESTIMATED POPULATION TRAJECTORY (NON-BOOTSTRAPPED)

		Estimated	Estimated	Estimated	Observed	Model	Estimated	Ratio of	Ratio of
	Year	total	starting	average	total	total	surplus	F mort	biomass
Obs	or ID	F mort	biomass	biomass	yield	yield	production	to Fmsy	to Bmsy
1	1950	0.057	6.562E+04	6.405E+04	3.646E+03	3.646E+03	7.852E+02	1.077E-01	2.718E+00
2	1951	0.041	6.276E+04	6.229E+04	2.581E+03	2.581E+03	1.709E+03	7.838E-02	2.600E+00
3	1952	0.049	6.189E+04	6.142E+04	2.993E+03	2.993E+03	2.138E+03	9.217E-02	2.564E+00
4	1953	0.054	6.103E+04	6.062E+04	3.303E+03	3.303E+03	2.535E+03	1.031E-01	2.528E+00
5	1954	0.050	6.027E+04	6.013E+04	3.034E+03	3.034E+03	2.778E+03	9.545E-02	2.496E+00
6	1955	0.059	6.001E+04	5.972E+04	3.502E+03	3.502E+03	2.970E+03	1.109E-01	2.486E+00
7	1956	0.057	5.948E+04	5.936E+04	3.358E+03	3.358E+03	3.144E+03	1.070E-01	2.464E+00
8	1957	0.078	5.926E+04	5.866E+04	4.578E+03	4.578E+03	3.468E+03	1.476E-01	2.455E+00
9	1958	0.085	5.815E+04	5.763E+04	4.904E+03	4.904E+03	3.946E+03	1.610E-01	2.409E+00
10	1959	0.111	5.720E+04	5.628E+04	6.232E+03	6.232E+03	4.553E+03	2.095E-01	2.369E+00
11	1960	0.068	5.552E+04	5.599E+04	3.828E+03	3.828E+03	4.705E+03	1.293E-01	2.300E+00
12	1961	0.078	5.639E+04	5.645E+04	4.381E+03	4.381E+03	4.492E+03	1.468E-01	2.336E+00
13	1962	0.095	5.651E+04	5.612E+04	5.342E+03	5.342E+03	4.634E+03	1.801E-01	2.341E+00
14	1963	0.191	5.580E+04	5.337E+04	1.019E+04	1.019E+04	5.784E+03	3.612E-01	2.311E+00
15	1964	0.228	5.139E+04	4.928E+04	1.126E+04	1.126E+04	7.424E+03	4.321E-01	2.129E+00
16	1965	0.183	4.756E+04	4.730E+04	8.652E+03	8.653E+03	8.182E+03	3.460E-01	1.970E+00
17	1966	0.201	4.709E+04	4.659E+04	9.349E+03	9.349E+03	8.431E+03	3.796E-01	1.951E+00
18	1967	0.198	4.617E+04	4.593E+04	9.107E+03	9.108E+03	8.661E+03	3.751E-01	1.913E+00
19	1968	0.201	4.572E+04	4.552E+04	9.172E+03	9.172E+03	8.799E+03	3.811E-01	1.894E+00
20	1969	0.204	4.535E+04	4.519E+04	9.203E+03	9.203E+03	8.909E+03	3.852E-01	1.879E+00
21	1970	0.212	4.506E+04	4.481E+04	9.495E+03	9.495E+03	9.035E+03	4.009E-01	1.866E+00
22	1971	0.114	4.460E+04	4.636E+04	5.266E+03	5.266E+03	8.535E+03	2.149E-01	1.847E+00
23	1972	0.097	4.787E+04	4.932E+04	4.766E+03	4.766E+03	7.463E+03	1.828E-01	1.983E+00
24	1973	0.119	5.056E+04	5.097E+04	6.074E+03	6.074E+03	6.816E+03	2.254E-01	2.095E+00
25	1974	0.124	5.131E+04	5.145E+04	6.362E+03	6.362E+03	6.621E+03	2.339E-01	2.125E+00
26	1975	0.175	5.156E+04	5.054E+04	8.839E+03	8.839E+03	6.962E+03	3.308E-01	2.136E+00
27	1976	0.134	4.969E+04	4.996E+04	6.696E+03	6.696E+03	7.205E+03	2.535E-01	2.058E+00
28	1977	0.127	5.020E+04	5.051E+04	6.409E+03	6.409E+03	6.993E+03	2.400E-01	2.079E+00
29	1978	0.244	5.078E+04	4.851E+04	1.184E+04	1.183E+04	7.711E+03	4.615E-01	2.103E+00
30	1979	0.265	4.666E+04	4.501E+04	1.194E+04	1.194E+04	8.946E+03	5.016E-01	1.933E+00
31	1980	0.325	4.366E+04	4.169E+04	1.356E+04	1.356E+04	9.970E+03	6.152E-01	1.809E+00
32	1981	0.281	4.008E+04	3.973E+04	1.118E+04	1.118E+04	1.054E+04	5.324E-01	1.660E+00
33	1982	0.346	3.943E+04	3.817E+04	1.322E+04	1.321E+04	1.092E+04	6.548E-01	1.633E+00
34	1983	0.409	3.714E+04	3.548E+04	1.453E+04	1.453E+04	1.152E+04	7.744E-01	1.538E+00
35	1984	0.380	3.413E+04	3.363E+04	1.279E+04	1.279E+04	1.188E+04	7.194E-01	1.414E+00
36	1985		3.322E+04						1.376E+00
	- 16-10-00-F61		A DATE OF THE PROPERTY AND A STATE OF THE PARTY AND A STATE OF THE PART						

test								ı	Page 3
			V 201-011-1199						
RESUL	TS FOR D	ATA SERIES #	1 (NON-BOOTS	TRAPPED)				CPUI	E Catcl
ata	type CC:	CPUE-catch s	eries					Series weight:	1.000
		Observed	Estimated	Estim	Observed	Model	Resid in		
bs	Year	CPUE	CPUE	F	yield	yield	log scale		
1	1950	*	3.912E+02	0.0569	3.646E+03	3.646E+03	0.00000		
2	1951	*	3.804E+02	0.0414	2.581E+03	2.581E+03	0.00000		
3	1952	*	3.751E+02	0.0487	2.993E+03	2.993E+03	0.00000		
4	1953	*	3.702E+02	0.0545	3.303E+03	3.303E+03	0.00000		
5	1954	*	3.672E+02	0.0505	3.034E+03	3.034E+03	0.00000		
6	1955	*	3.647E+02	0.0586	3.502E+03	3.502E+03	0.00000		
7	1956	*	3.625E+02	0.0566	3.358E+03	3.358E+03	0.00000		
8	1957	*	3.582E+02	0.0780	4.578E+03	4.578E+03	0.00000		
9	1958	*	3.520E+02	0.0851	4.904E+03	4.904E+03	0.00000		
10	1959	*	3.437E+02	0.1107	6.232E+03	6.232E+03	0.00000		
11	1960	*	3.419E+02	0.0684	3.828E+03	3.828E+03	0.00000		
12	1961	*	3.448E+02	0.0776	4.381E+03	4.381E+03	0.00000		
13	1962	*	3.427E+02	0.0952	5.342E+03	5.342E+03	0.00000		
14	1963	*	3.259E+02	0.1909	1.019E+04	1.019E+04	0.00000		
15	1964	3.800E+02	3.010E+02	0.2284	1.126E+04	1.126E+04	-0.23319		
16	1965	2.400E+02	2.888E+02	0.1829	8.652E+03	8.652E+03	0.18525		
17	1966	2.290E+02	2.845E+02	0.2007	9.349E+03	9.349E+03	0.21701		
18	1967	2.780E+02	2.805E+02	0.1983	9.107E+03	9.107E+03	0.00879		
19	1968	2.200E+02	2.780E+02	0.2015	9.172E+03	9.172E+03	0.23395		
20	1969	1.970E+02	2.760E+02	0.2037	9.203E+03	9.203E+03	0.33709		
21	1970	2.190E+02	2.736E+02	0.2119	9.495E+03	9.495E+03	0.22269		
22	1971	*	2.831E+02	0.1136	5.266E+03	5.266E+03	0.00000		
23	1972	*	3.012E+02	0.0966	4.766E+03	4.766E+03	0.00000		
24	1973	*	3.112E+02	0.1192	6.074E+03	6.074E+03	0.00000		
25	1974	*	3.142E+02	0.1237	6.362E+03	6.362E+03	0.00000		
26	1975	3.500E+02	3.086E+02	0.1749	8.839E+03	8.839E+03	-0.12575		
27	1976	3.090E+02	3.051E+02	0.1340	6.696E+03	6.696E+03	-0.01257		
28	1977	3.370E+02	3.085E+02	0.1269	6.409E+03	6.409E+03	-0.08840		
29	1978	4.450E+02	2.962E+02	0.2440	1.184E+04	1.184E+04	-0.40692		
30	1979	3.160E+02	2.749E+02	0.2652	1.194E+04	1.194E+04	-0.13938		
31	1980	2.520E+02	2.546E+02	0.3252	1.356E+04	1.356E+04	0.01016		
32	1981	2.310E+02	2.426E+02	0.2814	1.118E+04	1.118E+04	0.04894		
33	1982	2.830E+02	2.331E+02	0.3462	1.322E+04	1.322E+04	-0.19383		
34	1983	2.220E+02	2.167E+02	0.4094	1.453E+04	1.453E+04	-0.02420		
35	1984	2.130E+02	2.054E+02	0.3803	1.279E+04	1.279E+04	-0.03638		
			1 (-)						
AST	erisk in	dicates missi	ng varue(s).						

