

Menu-driven software series (No. 3) JABBA_MANAGER (VER 1.3.6) Manual

(May, 2025)

Tom Nishida (PhD) (Representative) <u>aco20320@par.odn.ne.jp</u> Kazuharu Iwasaki (Software Engineer) [MENU][©] Menu-driven stock assessment software development team(Japan) <u>https://www.esl.co.jp/assets/menu</u>

> Supervised by Dr Sheng-Ping Wang Professor National Taiwan Ocean University Peer reviewed by Dr Doug Butterworth Professor Emeritus, University of Cape Town

© All copyrights and patents are reserved by [MENU] Note: The current version is 1.3.6. Some software images show older versions, which is not a problem as they are the same.

ACRONYMS

AR	AutoRegressive model	OBS	Observed or Observation
ASPIC	A Stock-Production Model Incorporating Covariates	PM	Production Model
B _{MSY}	Total biomass or Spawning Stock Biomass at MSY	POR	Portugal
Cl	Confidence Interval	PPC	Posterior Predictive Check
CPUE	Catch Per Unit Effort	PPMR	Prior to Posterior Median F
CV	Coefficient of Variation	PPVR	Prior to Posterior Variance
DevTools	R package for web-developer tool	psi	Depletion rate (B1/K)
EC	Equilibrium Condition	R	Open-source & free programming I
F _{MSY}	Fishing mortality at MSY	Reshape2	R package to transform dat
GitHub	Git (file management tool) + Hub(center) (Internet hosting service)	RMSE	Root Mean Square Error
HCR	Harvest Control Rule	Sigma2	Process variance
JABBA	Just Another Bayesian Biomass Assessment	SpiCT	Stochastic surplus producti
JABBA_Manager	Menu-driven software for JABBA	SWO	Swordfish
JAGS	Just Another Gibbs Sampler	ТАС	Total Allowable Catch
MASE	Mean Absolute Scaled Error	ТВ	Total Biomass
MCMC	Markov Chain Monte Carlo methods	TB _{MSY}	Total Biomass at MSY

MSY

OBS	Observed or Observation
PM	Production Model
POR	Portugal
PPC	Posterior Predictive Check
PPMR	Prior to Posterior Median Ratio
PPVR	Prior to Posterior Variance Ratio
psi	Depletion rate (B1/K)
R	Open-source & free programming language for statistical analyses & others
Reshape2	R package to transform data between wide and long formats.
RMSE	Root Mean Square Error
Sigma2	Process variance
SpiCT	Stochastic surplus production model in continuous time
SWO	Swordfish
ТАС	Total Allowable Catch
ТВ	Total Biomass
TB _{MSY}	Total Biomass at MSY

Maximum Sustainable Yield

SOFTWARE COPYRIGHT AND TERMS OF USE

[MENU] MENU-DRIVEN STOCK ASSESSMENT SOFTWARE DEVELOPMENT TEAM

- We are happy for everyone to use this software for their important work in fisheries managements.
- As we have many users, we have basic rules for users to utilize our software in a harmonious and trustworthy way.
- Thus, we maintain the current **SOFTWARE COPYRIGHT & TERMS OF USE.** See page 5~8 at <u>https://www.esl.co.jp/products/menu/menu.pdf</u>
- Please kindly follow rules.

Acknowledgements

[MENU] Menu-driven stock assessment software development team is very grateful to Dr Henning Winker (FAO) and Dr Ai Kimoto) (ICCAT) for guiding JABBA through its initial learning phase.

We would also like to thank Dr Sheng-Ping Wang (Professor, National Taiwan Ocean University) for supervising this JABBA menu-driven software development and Dr Doug Butterworth (Professor Emeritus, University of Cape Town, South Africa) for peer reviewing.

Contonto	ACRONYMS	02				
Contents	SOFTWARE COPYRIGHT AND TERMS OF USE	03				
	Acknowledgements					
	1. Introduction					
	1.1 Backgrounds & JABBA Outline	06-18				
	1.2 JABBA Application to the menu driven software	19-25				
	2. Preparation					
	2.1 Requirements for PC & Remarks	26-29				
	2.2 Installation	30-43				
	2.3 Uninstallation	44-45				
	2.4 Schematic diagram of JABBA	46				
	2.5 Setting up folders & files	47-51				
	2.6 Input data (catch, CPUE & CV)	52-56				
	2.7 Menu	57				
	3. JABBA runs(Schaefer • Fox) (Base case & sensitivity)	58				
	3.1 Outline	60-65				
	3.2 Virgin stock	- 66-112				
	3.3 Non virgin stock	- 113-135				
	4. Final remarks	- 136				
	Appendix A History of Development & Application underpinning this software-	137				
	Appendix B Report of JABBA run (sample)	- 138-158				

5

Introduction Introduction Backgrounds & JABBA Outline

This menu-driven stock assessment software (JABBA) is for beginners in stock assessments and also, for those who cannot manipulate R and need to run JABBA. Therefore, this manual uses with less mathematical, statistical formulae & notations and no R commands.

Where does JABBA & this software fit into the classification of stock assessments? → Type 3 : Data rich type with catch, CPUE & Priors.

	Data type	Information	Name (main data)	Data period	Reference Point (RP) (MSY, Fmsy, TBmsy, target & limit RP)		Models & Application (examples)	(Implementation R, code, package) (examples)
TYPE 1	Qualitative	Parameters	No data			•	ERA (Ecosystem Risk Assessment) PSA (Productivity Susceptibility Analysis)	✓ ✓	R Package
TYPE 2	Quantitative	 ✓ Real data ✓ Parameter ✓ valuses ✓ Priors 	Data Poor (length)	Shorter (< a few years)	Some available only for short period (snap shot SA)	•	Length based models (ELEFAN, FiSAT, Y/R, S/R, LBSPR, Thompson & Bell)	✓ ✓	R Package (FAO & others)
		(Bayesian approach)	Data Poor (cach)	Longer (> 10 years pre- ferable)	Some avilable (relative & subject to assumptions)	•	Delpetion rate assumed (CMSY & OCOM) Depletion rate not assumed (ORCS & SSCOM) Robin-hood methods		
TYPE 3			Data Rich (catch; CPUE; biological		Available Realistic & objective (subject to	•	Surplus Production models (SPM) (ASPIC, SPiCT & JABBA) Age/size structured model	✓ ✓ ✓	Own codes (SS) R (JABBA) MENU driven
			paramter values; and/or priors)		assumptions) (most important for management)	•	(VPA, ASPM, SCAA, SCAS) Integrated models (SS, CASAL)		(JABBA_Manager)

Nishida (2025)

Introduction 1.1 Backgrounds & JABBA Outline

- [MENU] Menu-driven stock assessment software development team, has been using ASPIC for the Surplus Production Model (SPM) in its menu-driven stock assessment software.
- However, recently, SPMs have been advanced substantially. (see Table next slide).

Evolution of SPM (Surplus Production Model) Color legend: Green (Advantage) and Yellow (data)													
			Features										
	Туре			Bayesian approach	Error type			Time					
Evolution		Author	Non- equilibrium condition		Observation error (CPUE)	Observation error (Catch)	Process error (Model)	Process error (F)	Continuous & Seasonal pattern	Life history and Selectivity	Data	Comments	
	Original SPM	Shaeffer(1954), PT(1969) & Fox (1970)										Original (not recommended)	
No.	ASPIC (ver2~5)	Prager (2004~2013)									Annual catch & CPUE	Outdated (not	
	ASPIC (ver7)	Prager (2014~)										recommended)	
	SPiCT (Stochastic surplus production model in continuous time)	Pedersen & Berg (2017)	YES		YES	YES		YES	YES		Quarterly or <u>finer-scale</u> catch & CPUE	Space state (all-in-one SPM)	
	JABBA (Just Another Bayesian Biomass Assessment)	Winker <i>et al</i> (2018)		YES			YES				Annual catch & CPUE	(recommended)	
P	JABBA -Select	Winker <i>et al</i> (2020)	: al								YES	Annual catch, CPUE & <u>length-</u> <u>composition</u>	Advanced JABBA (suitable for moderate data) (recommended)
(Note) Representative SPMs are listed, while there are many other SPMs (for details, see Cousido-Roch et all, 2022)													

Introduction
 1.1 Backgrounds & JABBA Outline

- Based on the review of the SPM evolution, the best at the present is <u>state space</u>(model describing population change by observation & process errors) based on the Bayesian approach.
- Currently, there are 3 main state space SPM (SPiCT, JABBA & JABBA-Select) for general use, available via GitHub (internet hosting service) including many ready-made useful functions & graphs.

Introduction 1.1 Backgrounds & JABBA Outline

Choice of 3 models depends on the available data

JABBA JABBA-Select SPiCT

1.

- : Annual catch and CPUE data
- : Annual catch, CPUE data and length-composition data
- : high-resolution data, such as quarterly (or finer-scale) catch and CPUE data.

1. Introduction 1.1 Backgrounds & JABBA Outline

• Cousido-Rocha et al (2022) notes that SPiCT includes all important functions (see Table below).

	ASPIC	SPiCT	JABBA
R package	connectASPIC	spict	JABBA
*) Type of formulation	Continuous-time	Continuous-time	Discrete-time
C_t observation error	×	\checkmark	×
I_t observation error	\checkmark	\checkmark	\checkmark
B_t process error	×	\checkmark	\checkmark
F_t process error	×	\checkmark	×
F_t seasonal patterns	×	\checkmark	×
Projections	\checkmark	\checkmark	\checkmark

Type of time formation (continuous & Discrete-time) are different among models Only SPiCT can handle continuous time See the next slide for details. What is type of time formation (Continuous & Discrete-time)?

- A continuous-time model uses differential equations in time, and consequently can provide values of biomass, for example, at any point of time through the year.
- A discreet-time model (this includes JABBA) considers time jumps of one-year (usually), so gives biomass & other values only at the start of each year.

Why we choose JABBA ?

- We mainly use annual based data thus the data are not finer time resolution (good for JABBA-Select) nor continuous time data (good for SPiCT).
- Thus, we selected JABBA.
- In addition, JABBA has many useful ready-made graphs and results outputs.

We now introduce an outline & features of JABBA.

Introduction
 1.1 Backgrounds & JABBA Outline

Outline JABBA (Winker *et al,* 2018)

(1) JABBA is an open-source modelling software under the class of generalized Bayesian State-Space Surplus Production Model;

(2) JABBA presents a unifying, flexible framework for biomass dynamic modelling, runs quickly and generates reproducible stock status estimates and diagnostic tools; and

(3) In recent years, this software has been widely applied in stock assessments around the world.

Introduction
 1.1 Backgrounds & JABBA Outline

JABBA: General features

- Integrated state-space tool for averaging multiple CPUE series;
- Fox, Schaefer or Pella Tomlinson production function;
- Advanced automatic fitting of multiple CPUE time series & associated standard errors;
- Data-weighting through estimation of additional observation variance for individual or grouped; and
- Inbuilt retrospective & hindcasting run and plotting options.

Comparison between ASPIC and JABBA

Based on the description on JABBA outlines & features, a summary is made on reasons why JABBA is superior to ASPIC. This is because we have been using ASPIC for many years, thus, we need a comparison for users to understand.

	JABBA	ASPIC						
(1)	Estimation method (Bayesian approach based on likelihood) used by JABBA is theoretically much better, more							
Estimation	flexible and superior than the least squares (tractional) method used by ASPIC.							
methods								
(2)	JABBA can estimate parameters much easily &	ASPIC needs a tedious grid (pin point) search (Batch job), which						
Parameter	effectively in a short time by the Bayesian	sometimes produces incorrect parameters due to local (false)						
estimation	approach with MCMC.	minima.						
(3)	JABBA can accept any CPUE series. After the	ASPIC needs to check CPUE series if it is plausible in advance by						
CPUE	run, implausible CPUE will be detected.	the data QC. Otherwise, it is difficult to get convergence.						
(4)	Outliers can be found easily after runs by	Need to check outliers before runs. It may be difficult to detect						
Outliers	inspecting the residual plots.	outliers after run as no effective graphs as in JABBA.						
(5)	JABBA theory is difficult & complicated. But it is	Theory is not difficult as for JABBA. But implementation by the						
Theory	easy to implement if the menu-driven software	menu-driven software is not as easy nor effective as for JABBA.						
	is used.							

1. Introduction

1.1 Backgrounds & JABBA Outline

JABBA: Features in details

Graphics

- a suite of inbuilt graphics illustrating model fit diagnostics & stock status results.
- Kobe-type biplot plotting functions

Diagnostics

- Residual & MCMC diagnostics
- Model diagnostic tools

Estimation

- Estimating Catch with Error
- Estimating the shape of posterior for a given input prior
- Optional estimation additional observation variance for CPUE time series
- Estimating or fixing the process variance

Projection

- Future projections for alternative catch regimes
- Forecasting for alternative TACs

1. Introduction 1.2 JABBA application to the menu driven software

2 features in this software

(1) **2 models** (Schaefer + Fox) are used

Pella Tomlinson is not used as Schaefer or Fox normally used as standard.

(2) 2 steps approach to estimate Posterior Probability Distribution Function of r and K

1st step : range model (constant function) **→** 2nd step: log normal model

- 1st step: the constant model will estimate the initial (log normal) <u>Posterior Probability Distribution</u> <u>Function(*)</u>.
- 2nd step: (*) will be used as the prior information for the log normal model (2nd step), then the final Posterior Probability Distribution Function will be estimated.

Note: This 2 steps approach uses the same data twice, both in the likelihood to give the posterior at step (1), and then again in step (2) when producing the posterior for that. Thus, this approach will provide less uncertainties and overconfident of parameters. To avoid these problems, we will change to the 1 step (normal) approach (for r and K) in the next version, which will be the standard Bayesian approach.

Note

- (1) For the constant function, JABBA internally estimates log-transformed values, thus plots are the dorm shape (not flat shape).
- (2) The initial estimated function is presented in light and the 2nd estimated posterior function in dark.
- (3) PPMR/PPVR is Prior to Posterior Median/Variance Ratio.
- (4) If ratios are close to 1, which means that posteriors (estimated values) are close to prior values.

1. Introduction

1.1 Backgrounds & JABBA Outline

JABBA: Features in details

Graphics

- a suite of inbuilt graphics illustrating model fit diagnostics & stock status results.
- Kobe-type biplot plotting functions

Diagnostics

- Residual & MCMC diagnostics
- Model diagnostic tools

Estimation

- Estimating Catch with Error
- Estimating the shape of posterior for a given input prior
- Optional estimation additional observation variance for CPUE time series
- Estimating or fixing the process variance

Projection

- Future projections for alternative catch regimes
- Forecasting for alternative TACs

1. Introduction

1.2 JABBA application to the menu driven software : Base case and sensitivity runs

- This software can implement both base case & sensitivities runs.
- The initial selection of the few most plausible runs are selected using key diagnostics available in page 3~4 of the Report.
- The best runs is selected by 14 diagnostics (refer to Selection form available in the 3rd menu).

	JABBA sub-menu		
JABBA	_Manager(ver1.3.5)(2025)	×	
	Base case & sensitivity		
	Schaefer		
	Fox		
	Selection of the best run		
	Linkage to Kobe I+II menu-driven software		To be completed by 2026.
ţÇţ	Manual Close		

1. Introduction 1.2 JABBA (sub-menu) application to the menu driven software

Schematic diagram of JABBA components and their relations

Note: GitHub (Internet hosting service) JAGS (Just Another Gibbs Sampler)

For details, refer to Section 2

Contents : Section 2 Preparations

- 2.1 Requirements for PC and Remarks
- 2.2 Installation
 - 2.2.1 Internet environment
 - 2.1.2 Microsoft .NET framework
 - 2.2.3 R
 - 2.2.4 JAGS
 - 2.2.5 DevTools
 - 2.2.6 Reshape2
 - 2.2.7 JABBA_Manager
- 2.3 Uninstallation
- 2.4 Schematic diagram of JABBA
- 2.5 Setting up folders & files
- 2.6 Input data (catch, CPUE & CV)
- 2.7 MENU

2. Preparations 2.1 Requirements for PC & Remarks

(1) Requirements for PC

- Screen resolution: 800x700 pixels or higher.
- If the menu & sub-menus do not fit within the screen, set the display setting in Windows to 100%.
- Operation System: MS window 10 or 11 (OS should be updated).
- NOT applicable for MAC (apple) PC.
- 64bit PC.
- RAM: minimum 2GB.
- Basic software (Word, Excel and Notepad)
- To make smooth operations, users need at least 30% of empty space of the hard disk.

2. Preparations 2.1 Requirements for PC & Remarks

(2) Remarks (1/2) Manual

- This PowerPoint is the manual.
- Users can get the manual from ESL Software folder (PDF file) (see below).

• Manual is also available in the "call button" located in the main menu (see below)

2. Preparations 2.1 Requirements for PC & Remarks

(2) Remarks (2/2)

Keep the original files (important)

Don't use original files. Make copies & use copies as work files like wk1, wk2, etc.

Operation by mouse

This manual explains operations based on "mouse". For "touch panel" or "key board", follow corresponding manipulations.

Save

Save files frequently.

2. Preparations 2.2 Installation

2.2 Installation

- 2.2.1 Internet environment2.2.2 Microsoft .NET framework2.2.3 R2.2.4 JAGS
- 2.2.5 DevTools
- 2.2.6 Reshape2
- 2.2.7 JABBA_Manager

2. Preparations 2.2 Installation 2.2.1 Internet environment

- Use fiber optic internet
- Do not use a proxy internet (proxy server)
 - → Sometimes its security system is too strong to install.
 - → This was experienced in Sri Lanka

2. Preparations 2.2 Installation 2.2.2 Microsoft .NET framework

- Normally MS .NET framework is pre-installed.
- If not, users will see the warning during the installation (below left).
- Then install the newest version(right).

2. Preparation 2.2 Installation 2.2.3 R

If users currently use R-4.4.1, please continue to use.

If users don't have R-4.4.1, please Install R-4.4.2-win

(83MB, zipped)(187MB: unzipped) from

Download R-4.4.2 for Windows

Users will get the installer (zip file) _____ R-4.4.2-win then unzip & install.

What is R?

"R" is an open-source and free programming language that is widely used as a statistical software, data analysis and graphic tool.

2. Preparation 2.2 Installation 2.2.4 JAGS

Install JAGS-4.3.1 (installer : zipped 25MB) & Unzipped (98MB) Download from <u>https://sourceforge.net/projects/mcmc-jags/files/</u>

What is JAGS? (Just Another Gibbs Sampler)

2. Preparation

2.2 Installation

2.2.4 JAGS

Application to execute Bayesian models by MCMC (developed by Dr Gibbs)

JAGS is the main engine for JABBA (MCMC for JABBA)

2. Preparation2.2 Installation2.2.5 Devtools (R application)

• Users need to install "devtools" using the R console.

R Console

- > >
- Open R console, then execute (type) install.packages("devtools")
 - Select "Yes" 2 times from choices (Yes/No/...)
- Enter then users will see the window (right)
- Then Click OK to finish.

(Chrome) DevTools is a set of web developer tools built directly into the Google Chrome browser.

Secure CRAN mirrors -Cloud [http: Australia (Canberra) [https] Australia (Melbourne 1) [https] Australia (Melbourne 2) [https] Austria [https] Belgium (Brussels) [https] Brazil (PR) [https] Brazil (SP 1) [https] Brazil (SP 2) [https] Bulgaria [https] Canada (MB) [https] Canada (ON 1) [https] Canada (ON 2) [https] Chile (Santiago) [https] China (Beijing 2) [https] China (Beijing 3) [https] China (Hefei) [https] China (Hong Kong) [https] China (Guangzhou) [https] China (Jinan) [https] China (Lanzhou) [https] China (Nanjing) [https] China (Shanghai 2) [https] China (Shenzhen) [https] Colombia (Cali) [https] Costa Rica [https] Cyprus [https] Czech Republic [https] Denmark [https] East Asia [https] Ecuador (Cuenca) [https] France (Lyon 1) [https] France (Lyon 2) [https] France (Marseille) [https] France (Paris 1) [https] Germany (Erlangen) [https] Germany (Göttingen) [https] Germany (Leipzig) [https] Germany (Münster) [https] Greece [https] Iceland [https] India (Bengaluru) [https] India (Bhubaneswar) [https] Indonesia (Banda Aceh) [https] CLICKYZO
2. Preparation 2.2 Installation 2.2.6 Reshape2 (R application)

- Users need to install "devtools" using the R console (see the previous page),
- Open R console, then execute (type) install.packages("reshape2")
- Enter, then users will see the window (right)
- Then Click OK to finish.

Data Reshaping in R (Reshape) is something like arranged rows and columns in your own way to use it as per your requirements.

2. Preparation2.2 Installation2.2.7 JABBA_Manager

Users will get the download link (installer) from [MENU] Double click the zipped installer

Installer (download folder)

JABBA_Manager(ver1.3.5)(2025)

CLICK!

2. Preparation2.2 Installation2.2.7 JABBA_Manager

Users will get the icon in the desktop, then double click.

If users have already Installed ".NetCore6.0", users will see the main menu (see next page).

If not, users will be asked to install. Follow the instruction.

After completed, double click the icon again. Then users will see the main menu (see next page).

Before using the software, users need to link to R.

Linkage to R

To do it, click the gear mark (lower left corner)

Where is the RScript.exe? => [normally] (C:)/Program Files/R/R-(Ver. no)/bin/RScript.exe

Then, users will see the JABBA main menu again.

Preparation 2.3 Uninstallation

- Before re-installment, users need to un-install the current version.
- To un-install, users follow the normal procedures.
- After completed, some files & folders are still remained, which should be deleted (see next).

PC > Windows (C:) > ESL Software	> JABBA_Manager
④ ⓒ 前 1↓ 並べ替え ~ ■	≣表示 ~ •••
名前	更新日時
🗋 unInstall.dat	2024/09/03 14:51
JABBA_Manager.deps.json	2024/09/02 14:17
🕲 JABBA_Manager.dll	2024/09/02 14:17
JABBA_Manager	2024/09/02 14:17
🗋 JABBA_Manager.pdb	2024/09/02 14:17
JABBA_Manager.runtimeconfig.json	2024/09/02 14:17
🖏 ClosedXML.dll	2024/07/18 23:16
🕲 Xceed.Document.NET.dll	2024/07/06 4:36
🔹 Xceed.Words.NET.dll	2024/07/06 4:36
SixLabors.Fonts.dll	2023/08/11 21:04
🕲 XLParser.dll	2022/05/20 17:49
DocumentFormat.OpenXml.dll	2022/03/15 10:39
ExcelNumberFormat.dll	2020/10/02 17:42
🔹 Irony.dll	2018/07/18 10:40
sys	2024/09/03 14:53
Fox	2024/09/03 14:52
🚬 Schaefer	2024/09/03 14:52

Original full folders & files before in-installation

2. Preparation 2.3 Uninstallation

- Some folders & files in JABBA_Manager are not completely deleted in the ESL software folder (see lists before & after).
- Users need to delete left-over files & folders <u>manually</u>.

PC > Windows (C:)	> ESL Software > JABBA_Manager >	
	↑↓ 並べ替え ~ 📄 表示 ~ ••••	
名前	更新日時	種类
🚞 sys	2024/09/03 9:54	ファ
Fox	2024/09/02 15:09	ファ
Schaefer	2024/09/02 15:09	ファ

Left-overs after un-installation, which should be deleted manually.

2. Preparation2.4 Schematic diagram of JABBA

Schematic diagram of JABBA components and their relations

Note: JAGS (Just Another Gibbs Sampler)

2. Preparation2.5 Setting up folders & files

2. Preparation

2.5 Setting up folders & files

- Users need to create their own "base folders" as shown below (for our example, "JABBA").
- Then, users need to create the working species folder, for our case, (1) SWO.
- Users need to create a few sub-folders (for our case, SWO_1 & SWO_2).
- This is because we normally need 1 or 2 runs to get the satisfactory results.
- In each sub-folder, we have 2 additional sub-folders, i.e., Schaefer & Fox.

					F	
; □ >	PC \rightarrow Windows (C:) \rightarrow	JABBA → ((1) SWO)	$C \qquad \square \qquad > PC \qquad > Windows (C:) \qquad >$	JABBA > (1) SWO >	SWO_1 →
0 0	A) I I I I I I I I I I I I I I I I I I I	並べ替え ~ 表示 ~			並べ替え ~ ─ ■ 表示 ~	
名前	^	更新日時	種	名前	更新日時	重類
				Tox Fox	2025/01/12 13:28	リァイル フォルダー
SWO_1		2025/01/12 13:28).	📜 Schaefer	2025/01/27 14:28	ファイル フォルダー
SWO_2		2025/01/12 13:28	フ:		on and An an addition of the shall be and the shall be a	

<u>Setting up sub folders & files (Schaefer & Fox).</u>

Set (1) 3 sample data files, (2) one R code and (3) one R code folder (see below). How to get these? (see next)

C 🖵	> 1	PC >	Winc	lows (C:)	>	JABBA	>	(1) SWO	>	SWO_1	>	Schaefer	>
0	[]		R	ŢŢŢ	∕↓	並べ替え	~	☰ 表示 ~					
名前		^				更新日時	Ŧ		種	重類		サイズ	
i source	•	This inc	cludes th	ne main R c	ode	file 🗋 run_JAI	BBA.R	for the JABB	A rui	ns. <u>Users doi</u>	n't ne	eed to edit.	I
Catch1													
DUE1	•	3 CSV i	nput file	es. Users ne	eed t	o create. De	etails	how to make	thes	se files will b	e exp	plained in 2.6.	
CV1	interfac	e.R •	This is th source su Necessar	ne interface ub-folder (to ry edits will	R co op). <u>U</u> be co	des to execu Isers also do Inducted by	ute ti n't n MEN	ne JABBA Scha <u>eed to edit</u> any U to be explair	efer inte ied la	model. Its sc rface R codes ater.	ource 5.	code is located	d in th

2. Preparation2.5 Setting up folders & files

How to get the sample data and R codes ?

ÿ 🖵	>	PC >	Win	dows (C:)	>	ESL Software >	JABBA_Manager	> JABBA references
C	lõ		Ŕ	ÎÌ	↑↓ 3	並べ替え 🐂 📃 表示	, ~ •••	
名前		1	^			更新日時	種類	サイズ
Sample data 2025/02/07 1:53 ファイル フォルダー								
Select	ion for	m				2025/02/07 2:34	Microsoft Excel	ワー 1,063 KB
🛃 Winke	er_Carv	alho_Kapu	ur_2018	JABBA		2023/01/12 16:35	Adobe Acroba 3	文書 1,872 KB

Copy & pastes 1 folder & 4 files to your PC

℃ ♀ …	Windows (C:) >	ESL Software > JABBA_N	1anager > JABBA	references > sample data >
	A] 🖄 🗊	↑↓ 並べ替え 〜 ─ 三 表示 〜		
名前	^	更新日時	種類	サイズ
📒 source		2025/02/05 14:36	ファイル フォルダー	
🔊 Catch1		2024/09/20 10:55	Microsoft Excel CSV	2 KB
DE1		2025/02/07 1:50	Microsoft Excel CSV	2 KB
🖾 CV1		2024/09/20 10:55	Microsoft Excel CSV	2 KB
JABBA_interface.	R	2024/09/20 10:55	R ファイル	5 KB
				50

Setting up working folders & files

Types of folders depend on objectives as examples below.

Main folder		Sub-folders		Model folder (fixed)		In each model folder, there are INPUT (4 files & 1 folder) and					
Species code	Scenario (examples)	Objectives	Examples	Model	RE (b	SULT (elow is	sult f	t folder after run)			
	1	1			(10						
	SW/0_1	To explore to	1st (trial run)	Schaefer							
SWO	500-1	find the best		Fox							
5110	SWO 2	rup	2nd (improved	Schaefer		Schae	efer(Result	s)			
	3000_2	run	& best run)	Fox		_			_		
		<u>7</u>				sourc	e				
	YFT_0.2			Schaefer 🗕		Catch					
		To ovelore to		Fox							
VET	YFT_0.4	find the heat	3 different depletion rates	t Schaefer 🛛 🕅 CPUE							
TFI		find the best		Fox		X CV					
	VET O C	depletion run		Schaefer							
	¥F1_0.6			Fox		JABBA	A_interface	e.R			
	KA14/ 4	Talandara	Deserves	Schaefer							
	KAW_I	To explore to	Base case	Fox							
		find the best		Schaefer							
KAW	KAW_2	run among	Sensitivity-1	Fox							
		base case &		Schaefer							
	KAW_3	sensitivities	Sensitivity-2	Fox							

51

2. Preparations2.6 Input Data (catch, CPUE & CV)

What are the contents of 3 CSV files ?

C 🖵	>	PC >	Wind	dows (C:)	>	JABBA	>	(1)	SWO	>	SWO_	1	>	Schaefer	>
D	Ō	(]	Ø	Ŵ	$\uparrow \downarrow$	並べ替え、	/		表示 ~		•••				
名前		~				更新日時	Ŧ			種	類			サイズ	
📒 source						2025/01/	/12 1	3:28		フ	アイルフォ	ルダー	-		
🛛 Catch1						2024/09/	/20 1	0:55		N	licrosoft I	Exce	CSV	/	2 K
Der CRUE1						2024/09/	/20 1	0:55		N	licrosoft I	Exce	I CSV	/	2 K
🖾 CV1						2024/09/	/20 1	0:55		N	licrosoft I	Exce	I CSV	/	2 K
D JABBA	_interf	ace.R				2024/09/	/20 1	0:55		R	ファイル				5 K

No data or missing data for CPUE and CV 🗲 blank

53

2. Preparations 2.6 Input Data (catch, CPUE & CV)

Important Remarks

[Catch]

- Catch unit can be either tons or Kg.
- Catch need to be continuous (no missing years).
- No 0-catch data is allowed. 1 can be entered for 0.
- Minimum 10 years of catch data are preferred for reliable assessments.

2. Preparations

2.6 Input Data (catch, CPUE & CV)

Important Remarks

[CPUE]

- <u>Maximum 6 fleets</u> of CPUE can be used due to the constraint in the software, although the original JABBA can accept more than 6 fleets.
- Minimum 10 years of CPUE data are preferable.
- Missing CPUE data are allowed, which should be minimal for effective time series analyses for AR(Auto Regressive model).
- CPUE at least recent 6 years need to be no missing data to implement retrospective & hindcast analyses.
- If missing data in recent years, average CPUE in years before & after can be substituted.

2. Preparations 2.6 Input Data (catch, CPUE & CV)

Numbering for Catch, CPUE & CV

- Any number & combination can be assigned
- Fox example, Catch0, CPUE1, CV3
- But same numbers like Catch1, CPUE1 & CV1 are easier for users to handle and distinguish.

Section 3 JABBA runs (Schaefer • Fox) (Base case & sensitivity)

3. JABBA runs (Schaefer • Fox)

- 3.1 Outline
- 3.2 Virgin stock
 - (1) Swordfish (SWO)

Base case : Schaefer(run1→run2:best run)

- : Fox (run1→run2:best run)
- : Selection of the best model run

Sensitivity

: No need as results are acceptable.

```
3.3 Non virgin stock
```

```
(1) Indian Mackerel (IM)
```

- Schaefer + Fox : Base case & Sensitivity 🗲 scenarios
- Selection of the best scenario from base case & sensitivity.

For JABBA runs, we need to consider 2 stock status (Virgin & Non virgin stock)

- In JABBA, for the virgin stock case, we set depletion value B1/K=1, which works OK. Estimated value is around 1 (no problem).
- However, in the non virgin stock case, seeding (guess) values for B1/K (such as 0.2, 0.4, 0.6) will <u>estimate same (similar) values</u> for all the time, i.e., different values (B1/K) cannot be estimated as in ASPIC.
- Estimated depletion values by JABBA Seeding values (strangely almost for depletion same values are (B1/K) estimated) Schaefer Fox 0.2 0.21 0.20 0.4 0.39 0.39 0.6 0.59 0.58 0.8 0.80 0.82

• Simple test indicates this (Table left).

For JABBA runs, we need to consider 2 stock status (Virgin & Non virgin stock)

- Additional tests (Dr Wang) indicated that the long-term data (more information) can estimate different values, but unstable (not for all the time), while the short-term data cannot (same as above).
- Thus, we use the scenario approach using different B1/K seeing values (e.g., 0.2, 0.3, 0.4, 0.5) to identify the most plausible scenario (B1/K value)(for example 0.5) using diagnoses, then proceed JABBA.

	Estimated depletion					
Sooding values	values by	y JABBA				
for doplotion	(strangely	y almost				
	same va	ues are				
	estimated)					
	Schaefer	Fox				
0.2	0.21	0.20				
0.4	0.39	0.39				
0.6	0.59	0.58				
0.8	0.80	0.82				

For JABBA runs, we need to consider 2 stock status (Virgin & Non virgin stock).

Note

We will develop another approach in the next version without using scenarios, which was suggested by Dr Doug Butterworth (our peer reviewer) i.e.,

Specifying a prior for B1/K and seeing whether the posterior after adding the data in any way update this prior.

Hence, we need 2 different types of JABBA runs.

by stock level & data availability (see illustration, next page)

3.2 Virgin stock (data available from the virgin stock)

➔ Data type [V1]

3.2 Non virgin stock (data available after the virgin stock)

→ Data type [V2]+[NV1]+[NV2]

Summary of how to run JABBA, how to select the **best run** in each model (Schaefer & Fox) & how to select the **best model** run from 2 models by base case & sensitivity, by stock level and by data availability

	Data				Base case runs	Sensitivity runs		
Stock level	availability code	Model	Run		Selection of the best run in each model	Selection of the best model run	Selection of the best run in each model	Selection of the best model run
		Schaefer	run1	run2	 (1) With B1/K=1, run until the best one is found (normally 1~2 runs). (2) In this case, run2 is the best for both models. 	(1) Select the best model run using the Selection form	(1) Probably no need to reas the plausible results can obtained in the base case setting for B1/K=1.	un sensitivity in be by the robust
Virgin [V1]		Fox	Fox run1 run2 for both model (3) The best run can be selected available in page each run.		for both models. (3) The best run (each model) can be selected by diagnoses available in page 3-4, Report of each run.	(available in the separate excel file),	(2) If needed, apply the so approach used in the nor case.	cenario 1 virgin stock
Non	[V2] [NV1]	V2] Schaefer (1) S B1/I rang (e.g.		narios for ally a wide r 0.4,0.6, 0.8)	 (1) Select the best run initially by visual inspection (retrospective patterns & Kobe plot available in Report each run). 		(1) Set up narrower range (e.g., 0.1, 0.2, 0.3) (interval=0.1) based on results of the base case	(1) Select the best model run by the selection
virgin	[NV2]	Fox	(interval=(run.	0.2) then	(2) If it is difficult, use diagnoses available page 3-4, Report for each run.		run, then apply the same scenario approach as in the base case run.	form

Thus, [V1] and [NV2] are assigned for our examples (below)

3.2 Virgin stock

(1) Swordfish (SWO) Data type [V1] (see last 2 slides)

Base case : Schaefer(run1 \rightarrow run2:best run)

: Fox (run1→run2:best run)

: Selection of the best model run (*)

Sensitivity : No need

3.3 Non virgin stock

(1) Indian Mackerel (IM) Data type [NV2] (see last 2 slides)

Schaefer + Fox : Base case + Sensitivity → Scenarios Selection of the best model from base case and sensitivity (*)

So, we start from SWO Base case Schaefer run1

3.2 Virgin stock

(1) Swordfish (SWO) [V1]

Base case	: Schaefer(run1 → run2:best run)
	: Fox (run1→run2:best run)
	: Selection of the best model run

Sensitivity : No need

3.3 Non virgin stock

(1) Indian Mackerel (IM) [NV2]

Schaefer + Fox : Base case & Sensitivity → Scenarios Selection of the best run from Base case & Sensitivity

Catch and standardized CPUE (5 fleets) used to run SWO_1 (Schaefer & Fox)

To start JABBA Manager, double click the icon then click "Schaefer" (example). Users will see the window (below right) (information from the previous run is still remained).

69

To select the data folder. Click ① "Select data folder" button, then ② go to the Schaefer folder and ③ click.

Input, Run & Report(Schaefe	r) ×		
Users will edit the input infor and to execute & create	NOTE rmation in this window. To save the input information Output/Report, click the button at the bottom.		
Select data folder		(1) フォルダーの選択	×
C:¥JABBA¥(3) KAW¥50-100%¥709	%¥Schaefer¥	$\leftarrow \rightarrow \checkmark \uparrow \cong \ \ \text{(1) SWO > SWO_1 > }$	✓ C SWO_10検索
Model selected Schaefer	(To change to Fox, go back to the main menu)	整理・ 新しいフォルダー	≣ • (?)
Option Inputs	Edit	✓ ➡ Windows (C:)	更新日時 種類
		🚞 ecup 📁 Fox	2025/01/12 13:28 ファイル フォノ
(Max 10 letters)	KAW	> 🔁 ESL Software 2 Schaefer	2025/02/07 12:41 ファイル フォノ
r prior (mini, max)	0.1 🖨 3.0 🖨	> TishStatJ	
K prior (mini, max) (tons) [Default] Mini=2*catch (Max) Max=10*catch (Max) Change values if needed	201,502 1,007,509	JABBA PerfLogs Program File	
B0/K (delpletion) 0 <b0 k≦1<="" td=""><td>1.00</td><td>Programme</td><td></td></b0>	1.00	Programme	
[Note] The job is running. ⊻ until "Run completed" is dis	<mark>Vait for a few - 15 minutes</mark> played.	フォルダー: Schaefer	(3) フォルダーの選択 キャンセル
Click to save, run & Report	Back		CLICK!

1st window (information from the previous run)

ect data folder >Iect data folder >:¥JABBA¥(3) KAW¥50-100%¥70	W¥Schaefer¥			
odel selected Schaefe	r (To change to Fox, go	back to the main menu)		
otion Inputs	Edit			
Run name (Max 10 letters)	KAW			
r prior (mini, max)	0.1	3.0		
K prior (mini, max) (tons) [Default] Mini=2*catch (Max) Max=10*catch (Max) Change values if needed	201,502	1,007,509		
B0/K (delpletion) 0 <b0 k≦1<="" td=""><td>1.00</td><td>\$</td></b0>	1.00	\$		
Note] The job is running.	<u>Wait for a few - 15 min</u>	utes		

Edit for the next run. Click to start to run.

mpai, nun a nepontocnue	NOTE				~		
Users will edit the input inf and to execute & creat	ormation in this window. T te Output/Report, click th	o save t ne buttor	he input hat the b	inform pottom	ation		
Select data folder C:¥JABBA¥(1) SWO¥SWO_1¥So	haefer¥						
Model selected Schaef	er (To change to Fox, go b	ack to the	main men	u)			
Option Inputs	Ed	it					
Run name (Max 10 letters)	SWO	<u>1</u> S 🗲	(Edit	Run n	name)		
r prior (mini, max)	0.1		3.0	•	Dofo	ult val	
K prior (mini, max) (tons) [Default] Mini=2*catch (Max) Max=10*catch (Max) Change values if needed	79,990		399,948 <mark> </mark>		See for	re OK. next p reason	ag is)
B0/K (delpletion) 0 <b0 k≦1<="" td=""><td>1.00</td><td></td><td></td><td>-</td><td></td><td></td><td></td></b0>	1.00			-			
[Note] The job is running. until "Run completed" is d	<mark>Wait for a few − 15 min</mark> isplayed.	<u>utes</u>					
Click to save run & Report				Bacl	k		
This	s is the virgin sto non-virgin case,	ock ca see s	ise [V ectio	'1]. F n 3.2	or th	ne	

Why default prior seeding values (r & K) OK?

This will be the effective way to estimate. If users want to change, please do so using the window.
During the process, the processing marker (waiting time sign by the go around in circles) will appear.

To complete the run, it will take a few - 15 minutes depending on data volume (# of years & fleet) and PC performance.

Users will edit the input inform and to execute & create C Select data folder	NOTE ation in this window. T Output/Report, click tl	To save the input information he button at the bottom.
C:¥JABBA¥(1) SWO¥SWO_1¥Schae	fer¥	
Option Inputs	Ed	it
Run name (Max 10 letters)	SWO	15
r prior (mini, max)	0.1	3.0
K prior (mini, max) (tons) [Default] Mini=2*catch (Max) Max=10*catch (Max) Change values if needed	79,990	399,948
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.00	¢
[Note] The job is running. Wa until "Run completed" is displa	<mark>ait for a few - 15 min</mark> ayed.	utes
Click to save, run & Report		Back

After the run is completed, "Run completed" window appears (below left). Then click OK. Users will see the same window again (below). Click X to close.

C:¥JABBA¥(1) SWO¥SWO_1	¥Schaefer¥	
Option		
	JABBA_Manager(ver1.1.0)(2024)	×
Run name (Max 10 letters)		
r prior (mini, max)	Run Completed. The Output/Report files is created & saved in th	e result folder
K prior (mini, max) (ton [Default]	Calculation time = 7.4 min	
Mini=2*catch (Max)		
Max=10*catch (Max) Change values if need		OK
B0/K (delpletion) 0 <b0 k≦1<="" td=""><td>1.00</td><td>: 3</td></b0>	1.00	: 3

C:¥JABBA¥(1)SWO¥SWO_1¥Sch	aefer¥		
ption Inputs	Edit		
Run name (Max 10 letters)	SWO_1	S	
r prior (mini, max)	0.1	3.0	
K prior (mini, max) (tons) [Default] Mini=2*catch (Max) Max=10*catch (Max) Change values if needed	79,990	399,948	
B0/K (delpletion) 0 <b0 k≦1<="" td=""><td>1.00</td><td></td><td>-</td></b0>	1.00		-

All outputs & Report are saved in the result folder (see next page).

- Results are saved in Schaefer(results) folder.
- In our case, results of the (first) Run name (SWO_1S) are stored.
- Contents of SWO_1 is shown in next page.

C	JABBA > (1) SWO	> SWO_1 >	Schaefer >			
	並べ替え 🔪 📃 表示	~ •••				
名前	更新日時	種類	サイズ			
Schaefer(Results)	2025/02/07 16:06	ファイル フォルダー				
source	2025/01/12 13:28) Windows (Ci)		> SWO 1 > Schoof	Constant Constant
🖾 Catch1	2024/09/20 10:55		v vindows (C.)	JABBA / (1) 3WO	> SWO_1 > Scheel	
DEPUE1	2024/09/20 10:55			↓ 並べ替え ~ 🛛 🗮 表示 ~		
🕺 CV1	2024/09/20 10:55	名前	^	更新日時	種類サイ	ズ
JABBA_interface.R	2024/09/20 10:55	SWO_1S	I	2025/02/07 16:06	ファイル フォルダー	'

To find out the Report

The Report has	SWO_1S(Schaefer) Report_SWO_1S (Schaefer)	
7 Sections		
(20 pages)	Contents	
	Output	
Annendiy B	Summary of results & diagnoses	
	1. Convergence	
snows an	A Model fit	
pages of	2. Model Inc 2.1 CPLIE Residuals (Bandomness & outliers)	
the	2.2 RMSE (Root Mean Square Error)	
Report 1S.	2.3 Prior to Posterior Median/Variance Ratio (PPMR/PPVR)	
• _	2.4 Posterior Predictive Check (PPC)	
	3. Retrospective analyses (model mis-specification)	
	4. Hindcast analyses (prediction power)	
	5. Estimated parameter values	
	6. Visual inspection	
	7. Next step (Selection of Schaefer or Fox)	
	Note: Sometimes there are blank figures and/or tables due to space limitations. In such a case, please copy and paste from the original output files	
	located one before this Report folder). If there are no outputs, please leave it empty.	
	1 78	

Users now need to evaluate if results are OK.

How to evaluate ?

Evaluation will be done using "Key diagnostics" (below) available in Page 3 (Report) (Details are explained in Report).

Summary of results & diagnoses (1/2) (Key diagnoses)

80

So, we now moving run2 from run1

3.2 Virgin stock

(1) Swordfish (SWO) Data type [V1]

Base case : Schaefer(run1→run2:best run) : Fox (run1→run2:best run) : Selection of the best model run

Sensitivity : No need

3.3 Non virgin stock

(1) Indian Mackerel (IM) Data type [NV2]

Schaefer + Fox : Base case + Sensitivity → Scenarios

Selection of the best scenario from base case & sensitivity.

From the results and diagnoses, 1~3 are OK, but 4 #13 Autocorrelation problems for 2 fleets (red alerts) (no serious outliers)

We need to delete them and rerun (SWO_2S) and re-evaluate

How to remove?

2 fleets data (CPUE & CV) will be removed and create the new data set (see next)

Numbering for Catch, CPUE & CV

- Any number & combination can be assigned
- Fox example, Catch, CPUE1, CV3
- But same numbers like Catch1, CPUE1 & CV1 are easier for users to handle and distinguish.

Catch and standardized CPUE (3 fleets) used to run SWO_2 (Schaefer & Fox)

We now use SWO_2 folder for the 2nd run

C □ > PC > Windows (C:)	> JABBA > (1) SWO	> 0	\Box >	PC > Window	/s (C:) > JABBA	> (1) SWO >	SWO_2 >
	↑↓ 並べ替え 〜 ─ 三 表示 〜		0		□ 1↓ 並べ替え、	∕	
名前	更新日時	種	名前	^	更新日時	種	類
SWO_1	2025/01/12 13:28	77	Fox		2025/02/	706 16:30 72	ァイル フォルダー
🚞 SWO_2	2025/01/12 13:28	77	Schaefer		2025/01/	/12 13:28 7:	ァイル フォルダー
				T			
		<u> </u>	/ PC /	Willdows (C.)	JABBA / (1) SVV	5 / 300_2 /	Schaeler /
		ςŌ	r (j	re m N	並べ替え 〉 ─ 三 表示	~ 	
		CD 名前	<u> </u>	ⓒ ⓓ ∿	並べ替え → 📄 表示 更新日時	 ••• 種類 	サイズ
		CD 名前 Source		፼ ₪ ∿	並べ替え 〜 📰 表示 更新日時 2025/01/12 13:28	 ・・・ 種類 ファイル フォルダー 	サイズ
		CD 名前 ■ source 腳 Catch	(î) (A) 2	e ı ► ►	並べ替え × ■ 表示 更新日時 2025/01/12 13:28 2014/00/20 10:55	 ・・・ 種類 ファイル フォルダー Microsoft Excel CSV 	サイズ V 2 K
		CD 名前 Source 题 Catch 题 CPUE			並べ替え 〜 ■ 表示 更新日時 2025/01/12 13:28 2014/00/20 10:55 2024/10/06 0:48	 ・・・< 種類 ファイル フォルダー Microsoft Excel CSV Microsoft Excel CSV 	サイズ V 2 K V 2 K
		C 名前 Source 题 Catch 题 CPUE 题 CV2		Image: wide wide wide wide wide wide wide wide	並べ替え 〜 ■ 表示 更新日時 2025/01/12 13:28 2014/00/20 10:55 004100 2024/10/06 0:48 M2℃1 S /06 0:48	 ・・・ 種類 ファイル フォルダー Microsoft Excel CSV Microsoft Excel CSV Microsoft Excel CSV 	サイズ V 2 K V 2 K V 1 K

Users need to re-run with the revised data in the same way as for the 1st run (SWO_1).

$\Box \rightarrow PC \rightarrow Windows (C:)$	> JABBA > (1) SWO	> SWO_2 > Schaefer	>
	↓ 並べ替え ~ → 三 表示 ~		
名前 ^	更新日時	種類 サイズ	
source	2025/01/12 13:28	ファイル フォルダー	
Catch2	2024/09/20 10:55	Microsoft Excel CSV	2 K
CPUE2	2024/10/06 0:48	Microsoft Excel CSV	2 K
1 CV2	2024/10/06 0:48	Microsoft Excel CSV	1 K
JABBA_interface.R	2024/09/20 10:55	R ファイル	5 K

After the working folder name "Schaefer" is selected, 3 CSV Data files (Catch2, CPUE2 & CV2) are automatically read. Then click to start run.

Input, Run & Report(Schae	fer)	\times
Users will edit the input int and to execute & crea Select data folder	NOTE formation in this window. To save the input inf te Output/Report, click the button at the bot	ormation tom.
C:#JABBA#(T) SWU ¥SWU_2¥S	chaeter¥	
Option	(10 change to Pox, go back to the main menu)	
Inputs	Edit	
Run name (Max 10 letters)	SWO_2S	
r prior (mini, max)	0.1 🔹 3.0	•
K prior (mini, max) (tons) [Default] Mini=2*catch (Max) Max=10*catch (Max) Change values if needed	79,990 399,948	
B0/K (delpletion) 0 <b0 k≦1<="" td=""><td>1.00</td><td>•</td></b0>	1.00	•
[Note] The job is running. until "Run completed" is c	<u>Wait for a few - 15 minutes</u> lisplayed.	
Click to save, run & R. Va	licke	Back
		87

After re-run, users will get output results in the folder SWO_2 (see below)

$C \qquad \square \rightarrow PC \rightarrow Windows (C:)$	> JABBA > (1) SWO	> SWO_2 > Schaefer >
	↓ 並べ替え ~ ─ 三 表示 、	•••
名前 Schaefer(Results)	Results of the is stored	e 2 nd run (SWO_2S) in this folder.
Catch2	2024/09/20 10:55	Microsoft Excel CSV 2 KI
Catch2	2024/09/20 10:55 2024/10/06 0:48	Microsoft Excel CSV 2 KI Microsoft Excel CSV 2 KI
Catch2 CPUE2 CV2	2024/09/20 10:55 2024/10/06 0:48 2024/10/06 0:48	Microsoft Excel CSV2 KIMicrosoft Excel CSV2 KIMicrosoft Excel CSV1 KI

Summary of results for SWO_2S from page 3-4, Report next 2 slides

SWO_2S(Schaefer)

Page 3 (Report)

Summary of results & diagnoses (1/2) (Key diagnoses)

91

SWO_2S(Schaefer)

92

3.2 Virgin stock (1) Swordfish (SWO) Data type [V1] : Schaefer(run1→run2:best run) Base case : Fox (run1 -> run2:best run) : Selection of the best model run Sensitivity : No need

3.3 Non virgin stock

(1) Indian Mackerel (IM) Data type [NV2]

Schaefer + Fox : Base case & Sensitivity -> Scenarios

Selection of the best scenario from base case & sensitivity.

What is Next ?

(1) Run Fox in the same way as Schaefer
 → As a result, the 2nd run is the best, same as Schaefer
 → Results SWO_2F (run and get the Report)

<mark>3.2 Virgin stock</mark>

(1) Swordfish (SWO) Data type [V1]

Base case

- : Schaefer(run1→run2:best run)
- : Fox (run1→run2:best run)
- : Selection of the best model run

Sensitivity

: No need

3.3 Non virgin stock

(1) Indian Mackerel (IM) Data type [NV2]

Schaefer + Fox : Base case → Sensitivity

Selection of the best model run from 2 models in the sensitivity.

Selection of the best model run by Selection form

- (1) Users now have the best run each for Schaefer (SWO_2S) & Fox (SWO_2F).
- (2) (After runs), the results are available in each Report word files (page 3-4).(the SWO_1S folder for Schaefer & the SWO_2F folder for Fox).
- (3) Users need to select the best model run using 14 diagnostics.
- (4) "Selection form (Excel table for comparison)" will be used

(5) Users can get this form located in the 3rd menu (right).

(7) For practices, users also can get it from ESL software, (see below) which is <u>not linked</u> to the software.

- The Selection form includes 14 diagnostics for 4 key themes.
- 4 themes are Convergence, Model fit, Retrospective analyses & Hindcasting.
- The Selection form includes 6 sheets shown from the 2nd slide from this sheet.
- There are 2 types of selection form, i.e., Sheet (2) to select from 2 models (Schaefer or Fox) (virgin stock case) and Sheet (3) another to select from scenarios (non virgin case).
- 14 diagnostics are equal weighted (default). If users want to change weighting, please do so by yourself.

How to use the Selection form? (refer to next 6 slides)

- As for sheet (2), based on the results of diagnoses, users will select the better model (Schaefer or Fox). See an example (our SWO) in sheet (2).
- The final decision on the best model will be made by more counts of "better model" as shown in sheet (2).
- <u>As for this example (SWO), the Fox model & Fox (SWO_2F) was selected</u> as shown in sheet (2).
- As for sheet (3), we will come back after we go through the example later for Indian Mackerel (IM).

Selection form (Excel) : Contents (6 slides)

	А	В	С	D	E	F	G	Н	1
1				About the	selection for	m (6 sheets)			
2	This form wi	ll be used to selec	t the best model (Schaefer or Fox) Details of diagno	or the best scena ostics are explaine	rio using 14 diag ed in each Repor	nostics availabl t.	e in Sheet (2) and	(3) respectively.
3	Contents								
4	(1) About (this sheet)							
5	(2) Exampl	e to select the	e best Model f	rom Schaefe	r and Fox. Ex	ample for Sw	ordfish (SW	0)	
6	(3) Exampl	e to select the	e best Scenario	o from base o	case and/or s	ensitivity. Ex	amp <mark>le for I</mark> n	dian Mackere	el (IM)
7	(4) How to	use diagnosti	cs # 12						
8	(5) How to	use diagnosti	cs # 42						
9	(6) How to	use diagnosti	cs #41 & # 43						
10									
11									
12									
13	> (1) A	bout (2) Selec	tion form (model)((SWO) (3)C	election form(scer	ario)(IM) (4) #12 (5) #4	(6) #41 + #4	3 + :

100

A					1 X		1	-	×	X	W		0	,	1
				Sel	ection of	the best	model r	un (So	haefer or F	ox) using 14	diagnostics	1			
	(Use	e "Sumi	mary o	f result	s & diagr	ostics",	page 3~4	l, Rep	ort) Examp	e : Swordfis	h (SWO) (fo	r details, s	ee Manual)		
	Free based on a	1. Co	onverg	ence (N	ICMC)			2. Mo	del Fit		3. Retros	pective			
	Evaluation	Heid	lelberge	r & Welch	p test	2.1 CPUE residuals 2.2 RMS			2 2.3 Posterior Predictive ISE Check (PPC)		analy	ses	4. Hindcast analyses		
Please see	Methods		Geweke.p Heidel.p (larger value (larger value better) better)			95% CI band RM		RMSE	Average p values (compute yourself)	Visual inspection	Mohan's ρ (-0.15~2.0)	Visual inspection	MASE (# of yellow: non significant=NG predicted skill) (for B & F)	MASE (Average value)	Visual inspection
Manual for details on diagnostics.	Criteria	к	r	к	(r	Red band Auto- correlation? No is better	total # of outliers less # is better	Less % better fit	Use the 5th sheet to compute. Closer to 0.5 is better	Ball shapes located in center are better (how many #?)	# of yellow markers (B & F ratio) less better	All trends should be similar patterns.	Less # better	should be < 1 & smaller better	# OBS points beyond the 95% CI band
	Output #		ŧ	20		# 1	13	# 10	#	12	# 42	# 40	# 43	5	# 41
_	(page#)		(p.3)		(p.3) ((p.3)	(p.4)		(p.3)	(p.3)	(p.4)		(p.4)
	diagnostics #	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Refer to sheet # how to do								(4)		(5)		(6)		
Users can add 1 more rows if 3	Schaefer (SWO_2S)	<mark>0.13</mark>	0.21	0.08	0.25	No	1	20.7%	0.854	not so good	0	ок	2	Non Significant(1.24)	3
finalists (for example, 2 Fox & 1 Schaefer).	Fox (SWO_2F)	0.67	0.43	0.31	0.06	No	2	20.4%	0.873	not so good	0	bit better than Schaefer	2	Non Significant(1.19)	3
	Better model ?	FOX	FOX	FOX	Schaefer	Same	Schaefer	FOX	Schaefer	same	Same	FOX	Same	FOX	Same
	(1)	6 diagno	oses are	better fo	r Fox, while	a 3 for Sch	aefer and	5 same	Thus Fox is th	ne best.					
Comments & decision	(2)	Althoug	h perfor	mance b	etween 2 r	nodels are	very simil	ar exce	pt convergen	e (Fox) much	better than Sch	aefer.			
accision	(3)	Because	of (1) 8	(2), Fox	model is s	elected.									
(Note)		Refer	red by	"Good	practices	for surpl	us produ	ction I	models" by	Kokkalis et a	l (2024)				
$\langle \rangle$	(1) A	bout	(2) Selec	tion for	m (mod	el)(SW	C)	(3)Sel	ection form	n(scenario)	(IM)	(4) #12	(5) #4	2 (6)

	Selection of the best scenario run using 14 diagnostics															
	(Use '	'Summ	ary of	results &	& diagno	stics", pa	ge 3~4,	Report) E	xample : In	dian Macke	rel (IM) (for	details, se	e Manual)			
	Evaluation	1. Co	onverg	<mark>ence</mark> (M	CMC)			2. Mode	el Fit		3. Retros	pective	4 Hindcast analyses			
	Evaluation	Heid	delberge	r & Welch	p test	2.1 CPUE residuals		2.2 RMSE	RMSE 2.3 Posterior Predictive Check (PPC)		analyses		4. Hillucast allaryses			
Please see	Methods	Gewe (larger bett	eke.p value ter)	Heid (larger val	del.p ue better)	95% C	l band	RMSE	Average p values (compute yourself)	Visual inspection	Mohan's p (-0.15~2.0)	Visual inspection	MASE (# of yellow: non significant=NG predicted skill) (for B & F)	MASE (Average value)	Visual inspection	
Manual for details on diagnostics.	Criteria	к	r	к	r	Red band Auto- correlation? No is better	total # of outliers less # is better	Less % better fit	Use the 5th sheet to compute. Closer to 0.5 is better	Ball shapes located in center are better (how many #?)	# of yellow markers (B & F ratio) less better	All trends should be similar patterns.	Less # better	should be <1 & smaller better	# OBS points beyond the 95% CI band	
	Output #		#	‡ 20		# 1	13	# 10	10 # 12		# 42	# 40	# 43		# 41	
	(page#)		(p.3)		(p.3)		(p.3)	(p.4)		(p.3)	(p.3)	(p.4)		(p.4)	
	diagnostics #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
	Refer to sheet # how to do								(4)		<mark>(</mark> 5)		(6)			
	Scenario #9 (MIN-MIN) <mark>0.3S</mark>	0.92	0.77	0.66	0.76	ок	o	72.9%	0.478	ОК	4	ОК	0	0.77	1	
Users can adjust # of scenarios to	Scenario #9 (MIN-MIN) <mark>0.4S</mark>	<mark>0.91</mark>	0.75	0.51	0.74	ОК	0	75.4%	0.479	ок	2	LESS	0	0.60	1	
compare	Scenario #9 (MIN-MIN) <mark>0.55</mark>	0.32	0.17	0.15	0.79	ок	0	77.5%	0.478	ОК	0	ок	0	0.64	1	
	Best scenario?	0.35	0.35	0.35	0.55	same	same	0.35	035 & 0.55	same	0.55	0.35 & 0.55	same	0.45	same	
	(1)	6 best o	liagnos	es for 0.35	, 4 for 0.5	S, 1 for 0.4	S and 5 fo	r same. Th	us 0.3S is sele	cted as the be	st.					
Comments &	(2)	In additi	ion, 0.3	S indicates	s much hig	her (bette	r) converg	ence resul	ts than others	5.						
uccision	(3)	In conclu	usoin, #	3S is seled	ted as the	e best scen	ario.									
< >	(1) Abo	out	(2) 5	Selection	n form (model)(SWO)	(3)	Selection fo	orm(scenar	rio)(IM)	(4) #12	2 (5) #4	2 (6)) #41+#4	

		Thi	s exan	nple is	from (3) so	enario #9	0.3S, Ind	ian Mac	kerel (IM) (page 3	3 , Report)			
Summary of results & diagnoses (1/2) (Key diagnoses)											3. Retrospective		
R ETROSPECTIVE ANALYSES										anai	yses		
	(#42) (n 12) Retrospective analyses					Mohan p B F				Mohan's ρ (-0.15~2.0)	Visual inspection		
	for 2 most important parameters (B & F) Mohan ρ (-0.15 < ρ < 0.2) → Converged (value closer to 0.025 is better) Yellow marker (not converged)			2021 2020 2019 2018 Åverage	0.08 0.09 0.05 -0.05 0.05 -0.05 0.04 -0.05 0.03 0.04			# of yellow markers (B & F ratio) less better	All trends should be similar patterns.				
									For this case,	# 42	# 40		
									# of yellow	(p.3)	(p.3)		
									makers are 2				

				This e	example i	s from (2) SWO_2S (pa	ige 4, Report)				
					SWO	2S(Schae	fer)			,		
agnoses (2/2)								4. Hindcast analyses				
	HINDCAST ANALYSES							MASE (# of	MAGE	Visual inspection		
	(#41) (page 15) Hindcast (predictive skill)							yellow: non significant=NG predicted skill) (for B & F)	(Average value)			
	→NG for prediction (#43) (page 14)			2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	AR1			Less # better	should be < 1 & smaller better	# OBS points beyond the 95% CI		
	(Predic	a a constant	2 P.NW.MA	SE - 1 22		# 4	3	# 41				
	. (S S S S S S S S S S S S S S S S S S S				(p.4) (p.4)						
	(smaller better)				2010 2012 2014 201 Year	6 2018 2020	-	12	13	14		
	Yellow m Not ac	Index										
	Index	E		Year	e are are			Non	3			
	JP_NV	V <u>1.12</u>	\geq					•	(1.24)			
	JP_SV			K						↓]		
	Averag	ge 1.24										
				1								

As a result of evaluation of 2 models (Schaefer & Fox) by Selection form <u>Fox (SWO_2F) was selected</u>

Major results (SWO_2F) are presented in next 3 slides

Summary of results & diagnoses (2/2)
(#37) Future Projections

- Projections next 10 years (40%, 60%,80%,100%,120%,140% and 160% of the current catch).
- The current catch is the average catch of the last 3 years.
- Projection is based AR1 (time series biases filtered).

Summary of results (JABBA stock assessment for swordfish (Indian Ocean)

- In the 1st runs, CPUE (2 fleets) had autocorrelation problems (Both models)
- In the 2nd runs after removals, all diagnoses are OK (both models), i.e., convergence, retrospective analyses, no autocorrelation and hindcasting.
- The final selection between 2 models by Selection form, Fox model (SWO_2F) was selected although both are similar performances except Fox model was much better in Convergence.
- Stock status (2021)
 - → Safe (green) zone (Pr < 84%) (B/Bmsy=1.18 F/Fmsy=0.64)
- Future projection (next 10 years until 2031)
 - → Current catch level (24,500 tons) are sustainable for B & F.

3. JABBA runs (Schaefer • Fox) (run1 & run 2)
3.2 Virgin stock [V1]
(1) Swordfish (SWO)

Summary (1/2): How to proceed JABBA runs and select the best model run (for the virgin stock case)

- (1) (optional) Try the preliminary & exploratory runs. If Kobe plot, Convergence & retrospective analyses are OK, then do the formal run.
- (2) Do the 1st run & if all key diagnoses are OK, then the 1st run is acceptable.
- (3) If not converged, check (#13) time series CPUE residuals.Delete CPUE with autocorrelation(red band) & extraordinary outliers.
- (4) Do the 2nd run. If converged, #13, retrospective analyses & Kobe plot are OK, then the 2nd run is acceptable.

3. JABBA runs (Schaefer • Fox) (run1 & run 2)
3.2 Virgin stock [V1]
(1) Swordfish (SWO)

Summary (2/2): How to proceed JABBA runs and select the best model run (for the virgin stock case)

(5) But the 2nd run is still not converged, then no solution.

- (6) Use other CPUE if available, do 3rd run & do the same checks.
- (7) If all key diagnoses are OK, then the 3rd run is acceptable.
- (7) If not, no solution, select the best run in each model using the diagnostics (page 3~4, Report).
- (8) Select the best model run using the Selection form.

For the non virgin stock data : We now consider cases for [V2], [NV1] or [NV2] Our example : Indian Mackerel (Sri Lanka) (IM) is [NV2]

114

Input data

2 possible outliers (2013 & 2020) due to sharp increases & drops
 → 2014: 10% of 2013, 2020: 12 times of 2012 and 2021: 10% of 2021 such up & down (huge biomass changes) not realistic to investigate this, we set up base case & sensitivity
 Base case : Original CPUE series & 5 sensitivity (next slide)

116

6 scenarios (1 base case & 5 sensitivity)

using 5 red dots : 2 for 2 outliers (Max) (2013 & 2020), 2 for their Minima (average values before & after) & one for average values of Max & Min (2020)

Indian Mackerel (IM)(Sri Lanka) data : B1/K depletion

- As explained, we need to set up several scenarios for B1/K1. How to set up? noting Catch start from 2000.
- As a 1st step, we will set 3 scenarios (0.2,0.4 & 0.6) (wider range by 0.2) to see the situation, then select the best scenario (B1/K).
- 0.8 is not included as fisheries start many years ago before 2000, hence 0.8 is likely too optimistic.

Considering 6 scenarios, 3 different depletion values (B1/K) & 2 models, we need to make 36 runs to evaluate the best run (most plausible results).

		Model							
Туре	6 Scenarios	S	chaefe	er	Fox				
		B1/K	(deple	tion)	B1/K (depletion)				
Base case (original CPUE series)	(1) Max-Max	0.2	0.4	0.6	0.2	0.4	0.6		
	(2) Max-Ave	0.2	0.4	0.6	0.2	0.4	0.6		
	(3) Max-Min	0.2	0.4	0.6	0.2	0.4	0.6		
Sensitivity	(4) Min-Max	0.2	0.4	0.6	0.2	0.4	0.6		
	(5) Min-Ave	0.2	0.4	0.6	0.2	0.4	0.6		
	(6) Min-Min	0.2	0.4	0.6	0.2	0.4	0.6		

How to evaluate runs ?

(1) Initial evaluation by visual inspections

→ Kobe plot & Retrospective analyses

(2) Evaluation by diagnostics

➔ After good runs are selected, they are inspected by the Selection form including 14 diagnostics, then the best run is identified. Initial evaluation by visual inspection for Kobe plot & retrospective analyses

Visual inspection for the base case (1) (Max-Max) is demonstrated next 2 slides. Table below shows the summary of results

(1) MAX-MAX (base case)										
Scenario	B1/K	0.2	0.4	0.6						
Kobe plot (*) too optimistic (NG)	Schaefer	NG	NG	NG						
if F/Fmsy < 0.5 & 1.5 < TB/TBmsy	Fox	NG	NG	NG						
Retrospective patterns	Schaefer	NA	NG	NG						
(visual inspection)	Fox	NG	NG	NG						

(*) Criteria of the un-plausible Kobe plot NG: No Good (not plausible) and NA : results are Not Available

Another initial criteria for future consideration

 Retrospective analyses by numerical evaluation using Mohan ρ values of Bratio (B/Bmsy) & Fratio(F/Fmsy), which are also important to evaluate stock assessment results.

For other runs

- Using the same visual inspections, 5 sensitivity runs are inspected.
- Actual visual inspections are omitted as many slides are needed to show.
- Instead, summary of results of all 6 runs (1 base case & 5 sensitivity) are shown in the next slide.

Summary of results base case + 5 sensitivity

NA Not Available

NG(Not Good) not acceptable

Only 1 run (6) Min-Min satisfies the visual inspection thus selected

(1) MAX-MAX (base case)										
Scenario	B1/K	B1/K 0.2 0.4		0.6						
Kobe plot too optimistic (NG)	Schaefer	NG	NG	NG						
if F/Fmsy < 0.5 & 1.5 < TB/TBmsy	Fox	NG	NG	NG						
Retrospective patterns	Schaefer	NA	NG	NG						
(visual inspection)	Fox	NG	NG	NG						

(2) MAX-AVE										
Scenario	B1/K	B1/K 0.2 0.4		0.6						
Kobe plot too optimistic (NG)	Schaefer	ОК	ОК	NG						
if F/Fmsy < 0.5 & 1.5 < TB/TBmsy	Fox	ОК	ОК	NG						
Retrospective patterns	Schaefer	NG	NG	NG						
(visual inspection)	Fox	NG	NG	ОК						

(3) MAX-MIN										
Scenario	B1/K	0.2	0.4	0.6						
Kobe plot too optimistic (NG)	Schaefer	ОК	ОК	NG						
if F/Fmsy < 0.5 & 1.5 < TB/TBmsy	Fox	ок	NG	NG						
Retrospective patterns	Schaefer	NG	NG	NG						
(visual inspection)	Fox	NG	NG	NG						

(4) MIN-MAX										
Scenario	B1/K	0.2	0.4	0.6						
Kobe plot too optimistic (NG)	Schaefer	NG	NG	NG						
if F/Fmsy < 0.5 & 1.5 < TB/TBmsy	Fox	NG	NG	NG						
Retrospective patterns	Schaefer	NA	NG	NA						
(visual inspection)	Fox	NG	NG	NG						

(5) MIN-AVE										
Scenario	B1/K	0.2	0.4	0.6						
Kobe plot too optimistic (NG)	Schaefer	NG	NG	NG						
if F/Fmsy < 0.5 & 1.5 < TB/TBmsy	Fox	NG	NG	NG						
Retrospective patterns	Schaefer	NA	NG	NA						
(Visual inspection)	Fox	ОК	NG	NG						

(6) MIN-MIN									
Scenario	B1/K	0.2	0.4	0.6					
Kobe plot too optimistic (NG)	Schaefer	ОК	ОК	NG					
if F/Fmsy < 0.5 & 1.5 < TB/TBmsy	Fox	ОК	ОК	NG					
Retrospective patterns	Schaefer	NG	ОК	NG					
(Visual inspection)	Fox	NG	NG	NG					

(6) MIN-MIN									
Scenario	B1/K	0.2	0.4	0.6					
Kobe plot too optimistic (NG)	Schaefer	ОК	ОК	NG					
if F/Fmsy < 0.5 & 1.5 < TB/TBmsy	Fox	ОК	ОК	NG					
Retrospective patterns	Schaefer	NG	ОК	NG					
(Visual inspection)	Fox	NG	NG	NG					

- As we use the wider range (every 0.2) for sensitivity.
- We need to investigate further sensitivity with narrower range (every 0.1)
- So, we will investigate 0.3, 0.4 and 0.5 (Schaefer) in details using 14 diagnostics available in the Selection form.

How to get the Selection form?

(1) From the 3rd menu

(2) Independently from the ESL software folder, which is <u>not linked</u> to the software.

PC > Windows (C:) > ESL Software	> JABBA_Manager >	JABBA references >			
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲	≣表示 > •••				
名前	更新日時	種類	サイズ		
📒 sample data	2024/10/02 1:52	ファイル フォルダー			
O Manual (JABBA_Manager)	2024/10/02 1:47	Chrome HTML Docu	5,824 KB		
🛛 Selection form	2024/09/30 9:16	Microsoft Excel ワーク	1,171 KB		
	PC > Windows (C:) > ESL Software	PC > Windows (C:) > ESL Software > JABBA_Manager > ▲ ●	PC → Windows (C:) → ESL Software → JABBA_Manager → JABBA references → ④ ② ① へ 並べ替え ~ 三 表示 ~ ・・・ 名前 ^ 夏新日時 種類 Selection form 2024/10/02 1:52 ファイル フォルダー 2024/10/02 1:47 Chrome HTML Docu 2024/09/30 9:16 Microsoft Excel ワーク		

Selection of the best scenario run based on 14 diagnostics Indian Mackerel (IM)															
	Fuchantion	1. Co	1. Convergence (MCMC) 2. Mode						el Fit		3. Retros	pective			
Please see Manual for details on diagnostics.	Evaluation	Heid	delberge	r & Welch	p test	2.1 CPUE	residuals	2.2 RMSE	2.3 Posterior Predictive Check (PPC)		analy	yses	4. Hindcast analyse		yses
	Methods	Geweke.p (larger value better)		Heidel.p (larger value better)		95% CI band RI		RMSE	Average p values (compute yourself)	Visual inspection	Mohan's p (-0.15~2.0)	Visual inspection	MASE (# of yellow: non significant=NG predicted skill) (for B & F)	MASE (Average value)	Visual inspection
	Criteria	к	r	к	r	Red band Auto- correlation? No is better	total # of outliers less # is better	Less % better fit	Use the 5th sheet to compute. Closer to 0.5 is better	Ball shapes located in center are better (how many #?)	# of yellow markers (B & F ratio) less better	All trends should be similar patterns.	Less # better	should be < 1 & smaller better	# OBS points beyond the 95% CI band
	Output #	# 20			# 13 # 10		# 12		# 42 # 40		# 43		# 41		
	(page#)	(p.3)		(p.3) (p.3)		(p.4)		(p.3)	(p.3)	(p.4)		(p.4)			
	diagnostics #	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Refer to sheet # how to do							1		(4)	(5)		(6)	1	
	Scenario #9 (MIN-MIN) <mark>0.3S</mark>	0.92	0.77	0.66	0.76	ок	0	72.9%	0.478	ок	4	ок	0	0.77	1
Users can adjust # of scenarios to	Scenario #9 (MIN-MIN) <mark>0.4S</mark>	0.91	0.75	0.51	0.74	ок	o	75.4%	0.479	ок	2	LESS	0	0.60	1
Compare	Scenario #9 (MIN-MIN) <mark>0.5S</mark>	0.32	0.17	0.15	0.79	ок	0	77.5%	0.478	ок	0	ок	0	0.64	1
	Best scenario?	0.35	0.35	0.35	0.55	same	same	0.35	035 & 0.55	same	0.55	0.35 & 0.55	same	0.45	same
	(1)	6 best d	liagnose	es for 0.39	5, 4 for 0.5	S, 1 for 0.4	S and 5 fo	or same. Th	nus 0.3S is sel	ected as the b	est.				
Comments &	(2)	In addit	ion, 0.3	S indicate	es much hi	igher (bette	er) conver	gence resu	lts than other	rs.					
	(3)	In conclu	usoin, #	3S is seleo	cted as the	e best scen	ario.								129

Scenario #9 (Min-Min) 0.3S is selected as the best.

- If users wish to search more finer scale of the depletion levels for last 2 decimals (such as 0.032, 0.034....), the same process can be used.
- But, one decimal such as 0.3 is enough considering sensitivities of results (accuracy levels), which is the standard level in the stock assessments.

Major results (next 3 slides)

Summary of results & diagnoses (2/2)

(#37) Future Projections

- Projections next 10 years (40%, 60%,80%,100%,120%,140% and 160% of the current catch).
- The current catch is the average catch of the last 3 years.
- Projection is based AR1 (time series biases filtered).

Summary of results (JABBA stock assessment for Indian Mackerel in Sri Lanka)

- Standardized CPUE (MIN-MIN scenario) produced most plausible results.
 - → 2 peaks (2013 & 2020) are unlikely correct abundance index.
- Depletion level (2020) =0.3 in CPUE(MIN-MIN) produced reliable results.
 - ➔ All diagnoses are OK, i.e., convergence, retrospective analyses, no autocorrelation and hindcasting.
- Stock status (2022)
 - → Safe (green) zone (60%) close to MSY levels (B/Bmsy=1.1 F/Fmsy=0.75)
- Future projection (next 10 years until 2032)
 - → Current catch level (4,500 tons) are sustainable (B & F)

4. Final Remarks (important)

- Through two JABBA case studies (Swordfish and Indian Mackerel), users well recognized that that process to get the best run is not easy and rather complex.
- This is because there are various treatments for JABBA run to get the best run (result) due to different attributes of each data.
- Thus, users need to work with us [MENU] to produce the best result as users know the data well and [MENU] know the software as a developer of the JABBA software.

Appendix A History of Development & Application underpinning this software

History of Development

2023/04	Start development
2024/10	Version (1.0.0) (Original version)
2024/12	Version (1.2.0) (Entry window improved)
2025/05	Version (1.3.6) (Report and Selection form are improved)

Application underpinning this software

- Microsoft Visual Studio (2022)
- Graphics: (1) C#, (2) . NetFrameWork4.7.2 and (3) . NetCore6.0
- R-4.3.1-win(2023)
- R related application
 - > JAGS
 - DevTools
 - Reshape2

\bigcirc

Appendix B Report of the JABBA run (Report_SWO_1S) (sample)

Report_SWO_1S (Schaefer)

Contents

Output

Summary of results & diagnoses

1. Convergence

Heidelberger and Welch Statistical test (MCMC)

2. Model fit

- 2.1 CPUE Residuals (Randomness & outliers)
- 2.2 RMSE (Root Mean Square Error)
- 2.3 Prior to Posterior Median/Variance Ratio (PPMR/PPVR)
- 2.4 Posterior Predictive Check (PPC)
- 3. Retrospective analyses (model mis-specification)
- 4. Hindcast analyses (prediction power)
- 5. Estimated parameter values
- 6. Visual inspection
- 7. Next step (Selection of Schaefer or Fox)

Note: Sometimes there are blank figures and/or tables due to space limitations. In such a case, please copy and paste from the original output files located one before this Report folder). If there are no outputs, please leave it empty.

SWO_1S(Schaefer)

Output (43 files) (24 files are used in this Report, while not for 19 files with X)

(Note) Blanks means implausible results or not available.

Summary of results & diagnoses (2/2)

4

SWO_1S(Schaefer)

1. Convergences

1.1 Heidelberger and Welch Statistical test (#20)

	Geweke.p	Heidel.p
К	0.80	0.57
r	0.96	0.67
q.1	0.63	0.63
q.2	0.86	0.49
q.3	0.84	0.40
q.4	0.84	0.09
q.5	0.85	0.62
psi	0.55	0.20
sigma2	0.92	0.12
Average	0.80	0.42

(#20) Heidelberger and Welch Statistical test on Convergence

Ho: $Pr_{\rm c}$ (MCMC is converged) $Pr_{\rm c} < 0.05(5\%) \rightarrow$ not converged (yellow markers) and Higher Pr. \rightarrow better convergence (MCMC)

SWO_1S(Schaefer)

SWO_1S(Schaefer)

2. Model fit

2.2 RMSE (Root Mean Square Error) (#10)

- Box plots of joint residuals show the overall median with quantiles. Points beyond the quantiles indicated by the vertical dotted lines. Losses is the smoother through all residuals.
- Less RMSE (%) is better fit.
- Outliers far from the quantile box should be deleted.
- For example (below), 1~3 points with red circles below, are candidates of outliers. Decisions how many points should be deleted, depend on the personal judgements, i.e., some deletes the worse one, while some deletes all.

2.3 Prior to Posterior Median/Variance Ratio (PPMR & PPVR)

2.4 Posterior Predictive Check (PPC) (#12)

Posterior Predictive Check (PPC) POR : p = 0.905 JP_NW : p = 0.992 5 PPC is conducted by CPUE fitness between 2 2 observed & predicted CPUE. Plausible range 2 of test statistic p is 0.2~0.8 and value closer 5 to 0.5 fits well. 15 10 0 10 15 20 The example (right) indicates that POR, 32 NE : p = 0.719 JP_SW : p = 0.619 ŝ 2 JP_NW & JP_SE are beyond 0.2~0.8 (not well Predicted $D(\chi^*)$ 2 5 fit), thus they might need to drop from 2 JABBA. Other inspection results (#13 & #10) need to be referred for the final decision. 20 25 10 15 0 5 10 15 Plots like a ball & centralized indicate better ٠ JP_SE : p = 0.951 2 fits (below). 40 0 **Posterior Predictive Check** Bayesian P-value = 0.48 0 10 15 20 Realized $D(\chi^2)$ (#12) PPC (CPUE fitness) (Average p = Users need to compute the average p value using 5 p values above (for example). The average value will be used to evaluate the best model (Schaefer or Fox) (see the selection form, the 3rd menu). 10 Actual Datapel

3. Retrospective analyses (#42)

(#42) Retrospective analyses to inspect model mis-specification using Mohan p values & graphs

(#40) Plots of retrospective analyses

4. Hindcast analyses (#43)

(#43) Hindcast analyses to examine the prediction power by MASE (Mean Absolute Scaled Error)

Index	MASE
POR	5.99
JP_NW	0.81
JP_NE	3.20
JP_SW	NA
JP_SE	1.41
Average	1.94

If MASE (Mean Absolute Scaled Error) < 1 → better prediction ability

MASE ≥ 1 (yellow markers) → Poor prediction power (Larger MASE values, less prediction power)

(#41) Plots of Hind cast analyses

5. Estimated parameter values

Note

- Users need to check estimated parameter values table (right) (#21) and trajectories for 6 relevant parameters (#19) (next page or available in the result folder).
- If users find the implausible values or trends (graphs), users can change 4 input parameters values, i.e., K, r, BO/K (depletion) and sigma, proc. In addition, autocorrelated time series CPUE and outliers need to remove (refer to #13, page 8). <u>Thus</u> users need to consider relevant factors synthetically for improvement.
- In this example, values and trajectories for 6 relevant parameters trends (graphs #19) seem to be plausible, thus users can use same seeding values when the next run is implemented for improvements.

Parameter	Meaning	Mean	Lower (95%)	Upper (95%)
К	Carrying capacity (t)	203,291	153,872	275,328
r	Pop. growth rate	0.63	0.46	0.84
BO/K	Depletion (EST)	0.97	0.68	1.30
sigma.proc	Estimable process VAR	0.05	0.03	0.07
m	Shape parameter	2	2	2
Fmsy	F at MSY	0.31	0.23	0.42
TBmsy	TB at MSY (t)	101,645	76,936	137,664
MSY	MSY (t)	31,761	29,018	35,629
Catch(2021)	Current catch	24,528		
bmsyk	Limit Ref. Point (TB/TBmsy)	0.50	0.50	0.50
TB(1950)/K	Depletion (OBS)(start)	0.97	0.67	1.30
TB(2021)/K	Depletion (OBS)(last)	0.51	0.39	0.66
TB/TBmsy	TB ratio	1.02	0.79	1.31
F/Fmsy	F ratio	0.76	0.51	1.08

(#21) Estimated parameter values

SWO_1S(Schaefer)

6. Visual inspection

- In addition to the specialized evaluations (previous Section 1~5), there are "visual inspection" for evaluation as follows:
- Surplus Production (SP) Phase plot (#17) and Kobe Phase plot (#18) (this page), Projections (#31) (next page) and Trajectories of 6 key parameters (#19) (previous page).
- There are also CPUE residuals plots (#7, #11 and # 14) available in the results folder.
- Users need to inspect visually to see if there are implausible behaviors.
- As users cannot improve these plots directly, after the next run for improvements (Section 1~5) is implemented, problems might be solved.

SWO_1S(Schaefer)

7. Next step (Selection of Schaefer or Fox)

After users select the best (representative) run each for Schaefer and Fox model, move back to the main menu, click the 3rd menu (see below) and create the "Selection form" using results from Schaefer & Fox model to decide the best model run.

JABBA_Manage	er(ver1.3.2)(2025)	×
	Base case & sensitivity	
	Schaefer	
	Fox	
	Selection of the best run	
	Linkage to Kobe I+II menu-driven software	
ţţţ	Manual Close	